Rapid cell-to-cell and plant-to-plant responses to abiotic stress
对非生物胁迫的快速细胞间和植物间反应
基本信息
- 批准号:2343815
- 负责人:
- 金额:$ 100.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Plants play a fundamental role in sustaining life on Earth, converting solar energy into sugars. To achieve optimal productivity, the different parts of the plant, and the plant as a whole, must rapidly acclimate to fluctuating changes in environmental conditions (e.g., changes in light intensity, temperature, humidity, the presence of pathogens, etc.). Because in nature, or under field conditions, not all parts of the plant are simultaneously subjected to the same environmental conditions, plants evolved the ability to rapidly transmit cell-to-cell signals from one part to another, optimizing their overall photosynthetic activity, growth, and productivity. This ability is termed ‘systemic signaling’. A novel live imaging method to detect rapid systemic signals within and between different parts of the same plant (i.e., cell-to-cell) and/or between different plants living in a community (i.e., plant-to-plant) was recently developed. This new method will be used to study different key regulators of rapid systemic signaling within and between different plants and characterize the molecular mechanisms that integrate them. Findings from this research will enable the development of future crop plants with enhanced resilience to global warming, preventing yield losses that are estimated at billions of dollars annually to the US economy. In addition, this research will be disseminated to the public through YouTube videos, radio programs at a local public radio station, outreach activities at the University of Missouri farm, as well as mentored research experiences for undergraduate and high school students.Stress-induced systemic signaling and systemic acquired acclimation play a pivotal role in plant resilience to abiotic stress. A novel imaging method that enables the measuring of rapid whole-plant systemic signals (reactive oxygen species, redox, calcium, and electric) in living plants grown in soil was recently developed. This method was used in previous studies to identify several important regulators of rapid systemic cell-to-cell signaling in plants, as well as to discover aboveground plant-to-plant systemic signaling. However, the mode of integration and hierarchy of systemic cell-to-cell and plant-to-plant signals is currently unknown. Using the newly developed imaging method, the hierarchy, mode of integration, and tissue specificity of different rapid systemic cell-to-cell and plant-to-plant signals triggered by a local application of excess light stress or wounding will be determined. In addition, the type of information being transferred during plant-to-plant signaling in response to excess light stress or wounding, and the protein complexes at the plasma membrane that integrate systemic calcium, reactive oxygen species, and redox signaling will be identified and studied. Results obtained from this study could lead to the development of novel approaches to enhance the resilience of crops to different stresses associated with global warming, as well as to the identification of key multiprotein complexes at the plasma membrane that link reactive oxygen species, redox, and calcium signaling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物在维持地球生命方面发挥着重要作用,将太阳能转化为糖分。为了实现最佳生产力,植物的不同部分以及整个植物必须迅速适应环境条件的波动变化(例如,环境的变化)。因为在自然界或田间条件下,植物的所有部分并非同时受到相同的环境条件影响,因此植物进化出了快速传播细胞的能力。 - 细胞信号来自这种能力被称为“系统信号”,可以检测同一植物不同部分内部和之间的快速系统信号。最近开发了这种新方法,用于研究不同植物内部和之间快速系统信号传导的不同关键调节因子,并表征分子。整合机制这项研究的结果将使未来农作物的开发能够增强对全球变暖的抵御能力,从而防止美国经济每年损失数十亿美元。此外,这项研究将通过 YouTube 向公众传播。视频、当地公共广播电台的广播节目、密苏里大学农场的外展活动,以及为本科生和高中生提供指导的研究经验。应激诱导的系统信号传导和系统获得的适应在植物适应环境的能力中发挥着关键作用。一种新颖的非生物胁迫成像方法。最近开发了一种能够测量土壤中生长的活植物的快速全植物系统信号(活性氧、氧化还原、钙和电)的方法,该方法在之前的研究中用于识别快速系统细胞转化的几个重要调节因子。植物中的细胞信号传导,以及发现地上植物间系统信号传导,然而,目前尚不清楚系统细胞间和植物间信号的整合和层次结构。成像方法、层次结构、整合模式和组织特异性此外,还将确定由局部过度光胁迫或伤害引发的不同快速系统性细胞间和植物间信号的响应,以及在植物间信号传递过程中传递的信息类型。过度的光应激或损伤,以及质膜上整合全身钙、活性氧和氧化还原信号传导的蛋白质复合物将被识别和研究,从这项研究中获得的结果可能会导致开发出增强机体恢复能力的新方法。作物面临与全球变暖相关的不同胁迫,以及鉴定质膜上连接活性氧、氧化还原和钙信号传导的关键多蛋白复合物。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ron Mittler其他文献
Redox regulation of plant stress and development.
植物胁迫和发育的氧化还原调节。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ruthie Angelovici;Ron Mittler - 通讯作者:
Ron Mittler
Ron Mittler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ron Mittler', 18)}}的其他基金
RESEARCH-PGR: Developing novel strategies to enhance the tolerance of crops to a combination of drought and heat stress.
研究-植物遗传资源:制定新策略来增强作物对干旱和热胁迫的耐受性。
- 批准号:
2110017 - 财政年份:2021
- 资助金额:
$ 100.87万 - 项目类别:
Continuing Grant
The 36th Annual Interdisciplinary Plant Group Symposium: Plant Signaling in Biotic and Abiotic Stress, May 29-31, 2019, Columbia, Missouri
第 36 届年度跨学科植物组研讨会:生物和非生物胁迫中的植物信号传导,2019 年 5 月 29-31 日,密苏里州哥伦比亚
- 批准号:
1923779 - 财政年份:2019
- 资助金额:
$ 100.87万 - 项目类别:
Standard Grant
Leaf-to-leaf communication during acclimation to multiple stresses
适应多种胁迫期间的叶间通讯
- 批准号:
1932639 - 财政年份:2019
- 资助金额:
$ 100.87万 - 项目类别:
Continuing Grant
NSF/MCB-BSF: Integrating ROS, redox and cell metabolism across plant and animal cells
NSF/MCB-BSF:整合植物和动物细胞中的 ROS、氧化还原和细胞代谢
- 批准号:
1936590 - 财政年份:2018
- 资助金额:
$ 100.87万 - 项目类别:
Standard Grant
NSF/MCB-BSF: Integrating ROS, redox and cell metabolism across plant and animal cells
NSF/MCB-BSF:整合植物和动物细胞中的 ROS、氧化还原和细胞代谢
- 批准号:
1613462 - 财政年份:2016
- 资助金额:
$ 100.87万 - 项目类别:
Standard Grant
Ultrafast Omics Reveals Key Players in the Response of Plants to Abiotic Stress
超快组学揭示了植物对非生物胁迫反应的关键参与者
- 批准号:
1353886 - 财政年份:2014
- 资助金额:
$ 100.87万 - 项目类别:
Continuing Grant
Dissecting the ROS Signaling Network of Cells
剖析细胞的 ROS 信号网络
- 批准号:
1132176 - 财政年份:2010
- 资助金额:
$ 100.87万 - 项目类别:
Continuing Grant
Collaborative Research: Abiotic Stress Combination: Bridging the gap between Arabidopsis Stress Research and Agriculture
合作研究:非生物胁迫组合:缩小拟南芥胁迫研究与农业之间的差距
- 批准号:
1137607 - 财政年份:2010
- 资助金额:
$ 100.87万 - 项目类别:
Standard Grant
ROS as Mediators of Rapid Long-Distance Self-Propagating Signals
ROS作为快速长距离自传播信号的中介
- 批准号:
1063287 - 财政年份:2010
- 资助金额:
$ 100.87万 - 项目类别:
Standard Grant
ROS as Mediators of Rapid Long-Distance Self-Propagating Signals
ROS作为快速长距离自传播信号的中介
- 批准号:
0950040 - 财政年份:2010
- 资助金额:
$ 100.87万 - 项目类别:
Standard Grant
相似国自然基金
蓝光调控mRNA甲基化与植物生长发育的细胞与分子机制
- 批准号:32330009
- 批准年份:2023
- 资助金额:217 万元
- 项目类别:重点项目
急性移植物抗宿主病中组蛋白H3K79表观遗传学修饰调控CD14+树突状细胞(DC3)分化的致病机制研究
- 批准号:82300244
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于植物来源的天然光合系统调控细胞内Ca2+稳态并改善退变软骨细胞线粒体功能的机制研究
- 批准号:82372454
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
植物苯甲酸合成网络解析及异源底盘细胞的构建
- 批准号:32301272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
IRF8调控树突状细胞分化及功能促进单倍体-脐血移植后移植物抗宿主病的机制研究
- 批准号:82370215
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
CSHL 2023 Eukaryotic DNA Replication and Genome Maintenance Conference
CSHL 2023真核DNA复制与基因组维护会议
- 批准号:
10677192 - 财政年份:2023
- 资助金额:
$ 100.87万 - 项目类别:
Placental Organoids for Modeling and Treating Preeclampsia
用于建模和治疗先兆子痫的胎盘类器官
- 批准号:
10464766 - 财政年份:2022
- 资助金额:
$ 100.87万 - 项目类别:
Administrative Supplement for Direct and rapid control of proteins at scale
用于大规模直接和快速控制蛋白质的行政补充
- 批准号:
10521748 - 财政年份:2021
- 资助金额:
$ 100.87万 - 项目类别:
Universal affinity membrane chromatography for rapid, one-step purification of proteins
用于快速、一步纯化蛋白质的通用亲和膜层析
- 批准号:
10250634 - 财政年份:2021
- 资助金额:
$ 100.87万 - 项目类别: