Rapid cell-to-cell and plant-to-plant responses to abiotic stress
对非生物胁迫的快速细胞间和植物间反应
基本信息
- 批准号:2343815
- 负责人:
- 金额:$ 100.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Plants play a fundamental role in sustaining life on Earth, converting solar energy into sugars. To achieve optimal productivity, the different parts of the plant, and the plant as a whole, must rapidly acclimate to fluctuating changes in environmental conditions (e.g., changes in light intensity, temperature, humidity, the presence of pathogens, etc.). Because in nature, or under field conditions, not all parts of the plant are simultaneously subjected to the same environmental conditions, plants evolved the ability to rapidly transmit cell-to-cell signals from one part to another, optimizing their overall photosynthetic activity, growth, and productivity. This ability is termed ‘systemic signaling’. A novel live imaging method to detect rapid systemic signals within and between different parts of the same plant (i.e., cell-to-cell) and/or between different plants living in a community (i.e., plant-to-plant) was recently developed. This new method will be used to study different key regulators of rapid systemic signaling within and between different plants and characterize the molecular mechanisms that integrate them. Findings from this research will enable the development of future crop plants with enhanced resilience to global warming, preventing yield losses that are estimated at billions of dollars annually to the US economy. In addition, this research will be disseminated to the public through YouTube videos, radio programs at a local public radio station, outreach activities at the University of Missouri farm, as well as mentored research experiences for undergraduate and high school students.Stress-induced systemic signaling and systemic acquired acclimation play a pivotal role in plant resilience to abiotic stress. A novel imaging method that enables the measuring of rapid whole-plant systemic signals (reactive oxygen species, redox, calcium, and electric) in living plants grown in soil was recently developed. This method was used in previous studies to identify several important regulators of rapid systemic cell-to-cell signaling in plants, as well as to discover aboveground plant-to-plant systemic signaling. However, the mode of integration and hierarchy of systemic cell-to-cell and plant-to-plant signals is currently unknown. Using the newly developed imaging method, the hierarchy, mode of integration, and tissue specificity of different rapid systemic cell-to-cell and plant-to-plant signals triggered by a local application of excess light stress or wounding will be determined. In addition, the type of information being transferred during plant-to-plant signaling in response to excess light stress or wounding, and the protein complexes at the plasma membrane that integrate systemic calcium, reactive oxygen species, and redox signaling will be identified and studied. Results obtained from this study could lead to the development of novel approaches to enhance the resilience of crops to different stresses associated with global warming, as well as to the identification of key multiprotein complexes at the plasma membrane that link reactive oxygen species, redox, and calcium signaling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物在维持地球上的生命,将太阳能转化为糖中起着基本作用。为了达到最佳的生产率,植物的不同部分以及整个植物必须迅速适应环境条件的变化(例如,光强度,温度,湿度,湿度,病原体等的存在的变化)。因为在本质上或在田间条件下,并非植物的所有部分都受到相同的环境条件的约束,所以植物可以将快速传输细胞对细胞信号从一个部分传播到另一部分,从而优化其整体光合作用活性,生长和生产率。此功能称为“系统性信号”。最近开发了一种新型的实时成像方法,用于检测同一植物(即细胞到细胞)和/或居住在社区中(即植物到植物)之间的不同部分(即细胞到细胞)之间的快速全身信号。这种新方法将用于研究不同植物内部和不同植物之间快速全身信号传导的不同关键调节剂,并表征整合它们的分子机制。这项研究的结果将使未来的作物植物的发展具有增强对全球变暖的韧性,从而防止了每年为美国经济估计数十亿美元的收益损失。此外,这项研究将通过YouTube视频,当地公共广播电台的广播节目,密苏里大学农场的宣传活动以及针对本科生和高中生的指导研究经验将其传播给公众。诱发的系统性信号传导和系统性获得的适应能力在植物弹性中对植物韧性起着至关重要的作用。最近开发了一种新型的全植物全身信号(活性氧,氧化还原,钙和电气)的新型成像方法,最近开发了土壤中生长的生物。在先前的研究中使用了该方法来识别植物中快速全身细胞 - 细胞信号传导的几个重要调节剂,并发现地上植物到植物的全身信号传导。但是,目前尚不清楚全身细胞对细胞和植物对植物信号的集成和层次结构的模式。使用新开发的成像方法,将确定不同快速的全身细胞到细胞和植物对植物信号的层次结构,整合模式以及由局部应用过多的光应力或获胜触发的植物对植物信号的特异性。此外,将在植物到植物信号传导过程中转移的信息类型,以响应过量的光应力或胜利,以及将整合全身性钙,活性氧和氧化还原信号传导整合的质膜上的蛋白质复合物。从这项研究获得的结果可能导致开发新的方法,以增强农作物对与全球变暖相关的不同压力的弹性,以及在质膜上鉴定关键多蛋白络合物的鉴定,这些质膜将活性氧,氧化还原和钙信号联系起来,这些奖项通过NSF的法定宣传和良好的支持,均具有良好的影响。 标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ron Mittler其他文献
Redox regulation of plant stress and development.
植物胁迫和发育的氧化还原调节。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ruthie Angelovici;Ron Mittler - 通讯作者:
Ron Mittler
Initial Characterization of a New Class of 2Fe-2S Proteins from the Plant Arabidopsis Thaliana
- DOI:
10.1016/j.bpj.2009.12.3062 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Andrea Conlan;Mark L. Paddock;Ohad Yogev;Yael Harir;Ron Mittler;Patricia Jennings;Rachel Nechushtai - 通讯作者:
Rachel Nechushtai
Ron Mittler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ron Mittler', 18)}}的其他基金
RESEARCH-PGR: Developing novel strategies to enhance the tolerance of crops to a combination of drought and heat stress.
研究-植物遗传资源:制定新策略来增强作物对干旱和热胁迫的耐受性。
- 批准号:
2110017 - 财政年份:2021
- 资助金额:
$ 100.87万 - 项目类别:
Continuing Grant
The 36th Annual Interdisciplinary Plant Group Symposium: Plant Signaling in Biotic and Abiotic Stress, May 29-31, 2019, Columbia, Missouri
第 36 届年度跨学科植物组研讨会:生物和非生物胁迫中的植物信号传导,2019 年 5 月 29-31 日,密苏里州哥伦比亚
- 批准号:
1923779 - 财政年份:2019
- 资助金额:
$ 100.87万 - 项目类别:
Standard Grant
Leaf-to-leaf communication during acclimation to multiple stresses
适应多种胁迫期间的叶间通讯
- 批准号:
1932639 - 财政年份:2019
- 资助金额:
$ 100.87万 - 项目类别:
Continuing Grant
NSF/MCB-BSF: Integrating ROS, redox and cell metabolism across plant and animal cells
NSF/MCB-BSF:整合植物和动物细胞中的 ROS、氧化还原和细胞代谢
- 批准号:
1936590 - 财政年份:2018
- 资助金额:
$ 100.87万 - 项目类别:
Standard Grant
NSF/MCB-BSF: Integrating ROS, redox and cell metabolism across plant and animal cells
NSF/MCB-BSF:整合植物和动物细胞中的 ROS、氧化还原和细胞代谢
- 批准号:
1613462 - 财政年份:2016
- 资助金额:
$ 100.87万 - 项目类别:
Standard Grant
Ultrafast Omics Reveals Key Players in the Response of Plants to Abiotic Stress
超快组学揭示了植物对非生物胁迫反应的关键参与者
- 批准号:
1353886 - 财政年份:2014
- 资助金额:
$ 100.87万 - 项目类别:
Continuing Grant
Dissecting the ROS Signaling Network of Cells
剖析细胞的 ROS 信号网络
- 批准号:
1132176 - 财政年份:2010
- 资助金额:
$ 100.87万 - 项目类别:
Continuing Grant
Collaborative Research: Abiotic Stress Combination: Bridging the gap between Arabidopsis Stress Research and Agriculture
合作研究:非生物胁迫组合:缩小拟南芥胁迫研究与农业之间的差距
- 批准号:
1137607 - 财政年份:2010
- 资助金额:
$ 100.87万 - 项目类别:
Standard Grant
ROS as Mediators of Rapid Long-Distance Self-Propagating Signals
ROS作为快速长距离自传播信号的中介
- 批准号:
1063287 - 财政年份:2010
- 资助金额:
$ 100.87万 - 项目类别:
Standard Grant
ROS as Mediators of Rapid Long-Distance Self-Propagating Signals
ROS作为快速长距离自传播信号的中介
- 批准号:
0950040 - 财政年份:2010
- 资助金额:
$ 100.87万 - 项目类别:
Standard Grant
相似国自然基金
急性移植物抗宿主病中组蛋白H3K79表观遗传学修饰调控CD14+树突状细胞(DC3)分化的致病机制研究
- 批准号:82300244
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
植物调控细胞磷稳态增强低钾胁迫适应性的分子机制研究
- 批准号:32370279
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
单核细胞膜型Tim-3胞外域脱落在肾移植受者慢性移植物失功中的效应机制研究
- 批准号:82302604
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有翅与无翅蚜虫差异分泌唾液蛋白Cuticular protein在调控植物细胞壁免疫中的功能
- 批准号:32372636
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
植物苯甲酸合成网络解析及异源底盘细胞的构建
- 批准号:32301272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CSHL 2023 Eukaryotic DNA Replication and Genome Maintenance Conference
CSHL 2023真核DNA复制与基因组维护会议
- 批准号:
10677192 - 财政年份:2023
- 资助金额:
$ 100.87万 - 项目类别:
Placental Organoids for Modeling and Treating Preeclampsia
用于建模和治疗先兆子痫的胎盘类器官
- 批准号:
10464766 - 财政年份:2022
- 资助金额:
$ 100.87万 - 项目类别:
Administrative Supplement for Direct and rapid control of proteins at scale
用于大规模直接和快速控制蛋白质的行政补充
- 批准号:
10521748 - 财政年份:2021
- 资助金额:
$ 100.87万 - 项目类别:
Universal affinity membrane chromatography for rapid, one-step purification of proteins
用于快速、一步纯化蛋白质的通用亲和膜层析
- 批准号:
10250634 - 财政年份:2021
- 资助金额:
$ 100.87万 - 项目类别: