NSF-JST: An Inclusive Human-Centered Risk Management Modeling Framework for Flood Resilience
NSF-JST:以人为本的包容性防洪风险管理模型框架
基本信息
- 批准号:2342842
- 负责人:
- 金额:$ 49.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern flood risk is influenced by the way nature works (such as how rainfall becomes streamflow) and how people organize things (such as how properties are protected). To comprehensively study flood risk, one must focus on specific spatial scales, acknowledge variations within those areas, and evaluate the lasting impacts of floods on society. This project, jointly supported by the National Science Foundation (NSF) in the US and the Japan Science and Technology Agency (JST), brings a team of scientists together to perform research that will develop a novel computer modeling approach that helps us understand and manage flood risk better. This approach is designed to create a modeling system that considers the natural conditions of the study area, people's perceptions and experiences related to floods, and factors such as governmental policies on buyouts and insurance. Most importantly, the research explicitly considers the differential impact of floods on vulnerable groups, including low-income, minority, disabled, and elderly individuals. The project is structured around three research tasks. The first focuses on establishing a comprehensive US-Japan flood risk data inventory, concentrating on existing and missing data related to marginalized groups. The work serves as a foundation for future collaborative flood research between the two countries. The second research task involves the development of a two-way coupled, multi-scale, agent-based flood risk catastrophe model that considers both marginalized and non-marginalized groups. This international collaboration ensures the incorporation of diverse cultural and societal factors from Japan and the US. The third research task centers on analyzing flood risks and resilience by jointly creating climate change and socioeconomic scenarios with an inter-country project advisory board. This project forms a meaningful trans-Pacific partnership for the next generation of flood modeling and advances the four priority areas of the Sendai Framework: 1) understanding disaster risk; 2) strengthening disaster risk governance; 3) investing in disaster risk resilience; and 4) enhancing disaster preparedness.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代洪水风险受到自然运作方式(例如降雨如何变成水流)以及人们组织事物的方式(例如如何保护财产)的影响。要全面研究洪水风险,必须关注特定的空间尺度,承认这些区域内的变化,并评估洪水对社会的持久影响。该项目由美国国家科学基金会 (NSF) 和日本科学技术振兴机构 (JST) 联合支持,汇集了一组科学家进行研究,开发一种新颖的计算机建模方法,帮助我们理解和管理洪水风险更好。该方法旨在创建一个建模系统,该系统考虑了研究区域的自然条件、人们对洪水的看法和经历以及政府买断和保险政策等因素。最重要的是,该研究明确考虑了洪水对弱势群体的不同影响,包括低收入、少数民族、残疾人和老年人。该项目围绕三项研究任务构建。第一个重点是建立全面的美日洪水风险数据清单,重点关注与边缘群体相关的现有和缺失数据。这项工作为两国未来合作洪水研究奠定了基础。第二个研究任务涉及开发双向耦合、多尺度、基于主体的洪水风险巨灾模型,该模型同时考虑边缘化和非边缘化群体。这种国际合作确保了日本和美国不同文化和社会因素的融合。第三个研究任务的重点是通过与国家间项目咨询委员会共同创建气候变化和社会经济情景来分析洪水风险和恢复力。该项目为下一代洪水建模建立了有意义的跨太平洋伙伴关系,并推进了仙台框架的四个优先领域:1)了解灾害风险; 2)加强灾害风险治理; 3)投资于灾害风险抵御能力; 4) 加强备灾。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi-Chen Yang其他文献
A Comparative Analysis of Methods for Titering Reovirus
呼肠孤病毒滴定方法的比较分析
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yi-Chen Yang;Xian-Yao Wang;Yuan-Yuan An;Chun-Xiang Liao;Nian-Xue Wang;Xing-Zhao;Zhi-Xu He - 通讯作者:
Zhi-Xu He
Yi-Chen Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi-Chen Yang', 18)}}的其他基金
A human-centered modeling approach to simulate best management practices and behaviors under uncertainty to meet water quality guidelines
以人为本的建模方法,用于模拟不确定情况下的最佳管理实践和行为,以满足水质准则
- 批准号:
2342309 - 财政年份:2024
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
CAREER:Understanding sustainable stormwater management via an Internet of Things-based green infrastructure network and a coupled Agent-Based Modeling approach
职业:通过基于物联网的绿色基础设施网络和基于代理的耦合建模方法了解可持续雨水管理
- 批准号:
1941727 - 财政年份:2020
- 资助金额:
$ 49.93万 - 项目类别:
Continuing Grant
INFEWS: US-China-Quantifying complex adaptive FEW systems with a coupled agent-based modeling framework
INFEWS:使用基于耦合代理的建模框架来量化复杂的自适应 FEW 系统
- 批准号:
1804560 - 财政年份:2018
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 49.93万 - 项目类别:
Standard Grant
SCC-IRG JST: Multimodal Data Analytics and Integration for Effective COVID-19, Pandemics and Compound Disaster Response and Management
SCC-IRG JST:多模式数据分析和集成,实现有效的 COVID-19、流行病和复合灾害响应和管理
- 批准号:
2301552 - 财政年份:2022
- 资助金额:
$ 49.93万 - 项目类别:
Continuing Grant
SCC-IRG JST: PanCommunity: Leveraging Data and Models for Understanding and Improving Community Response in Pandemics
SCC-IRG JST:泛社区:利用数据和模型来理解和改善流行病中的社区响应
- 批准号:
2125246 - 财政年份:2021
- 资助金额:
$ 49.93万 - 项目类别:
Continuing Grant
SCC-IRG JST: Multimodal Data Analytics and Integration for Effective COVID-19, Pandemics and Compound Disaster Response and Management
SCC-IRG JST:多模式数据分析和集成,实现有效的 COVID-19、流行病和复合灾害响应和管理
- 批准号:
2125165 - 财政年份:2021
- 资助金额:
$ 49.93万 - 项目类别:
Continuing Grant