CAREER: Development of Radio Frequency Non-Invasive Nanosecond Pulse Therapeutic Devices
职业:射频非侵入性纳秒脉冲治疗装置的开发
基本信息
- 批准号:2341047
- 负责人:
- 金额:$ 48.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2029-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Prior to the global pandemic, mental and neurological health conditions such as anxiety and depression were already increasing at alarming rates. Now, according to the World Health Organization (WHO), post pandemic incidence of such conditions has increased by 25-35% worldwide and the WHO is calling for all countries to step up mental health services and support. This highlights the need for more accessible and less invasive treatment options for neurological disorders. Electrical neurostimulation methodologies, such as transcranial magnetic stimulation (TMS), have proven effective in treating various neurological disorders. TMS stimulates the brain using short-duration pulses of electrical current induced by a magnetic field. However, TMS requires stable high-power systems typically found in hospital settings. TMS treatment plans involve daily hospital visits for three weeks, or sometimes multiple treatments in a single day, which limits accessibility to patients who are already managing depression or anxiety symptoms such as social withdrawal and sleep irregularities that disrupt their everyday routines. Moreover, attending regular in-person treatment sessions may not be feasible for those in rural or low-income demographics. However, nanosecond electrical pulses (NEPs), distinguished by their high intensity and extremely narrow pulse width, have emerged as a promising therapeutic approach for various neurological disorders. NEP has demonstrated remarkable efficacy in stimulating cells and nerves without causing harm and has potential for portable devices that would help reduce the need for hospital visits and greatly increase accessibility. This project seeks to understand the limitations of traditional NEPs and find solutions to adapt them to smaller devices. The project will produce a medical device prototype incorporating the research findings, broadening the range of non-invasive, accessible neurological treatment options for patients. The project's K-12 outreach, in collaboration with Sierra Nevada Journeys and employing biosensors in Family Science Nights and adult programs, will enhance STEM education through their feedback expertise.NEPs offer substantial neuromodulation potential, capable of replicating physiological stimuli for non-invasive treatment of neurological disorders. Despite their potential, NEPs encounter obstacles in non-invasive in-vivo applications due to constraints in penetration depth and signal distortion through human or animal body. The objectives of this study are to (1) understand the limitations of traditional NEPs and find solutions to adapt them to smaller devices, (2) address the issue of signal distortions caused by varying anatomical differences, and (3) develop a medical device prototype that incorporates solutions to the aforementioned challenges. Leveraging the potential of NEPs, the research will employ RF signals for enhanced penetration, utilize deep-learning techniques for anatomical compensation, and incorporate wider pulse widths and MHz pulse repetition rates to lower the threshold voltage. The use of digitally generated RF-NEP could represent a significant innovative shift in neurostimulation methodology. This non-invasive approach allows for deeper penetration into animal bodies while including specific waveforms that satisfy specific needs. The integration of these innovative solutions into the design of a new medical device speaks to the translational potential of this research. This project anticipates advancing theoretical knowledge and a concrete, tangible improvement in neurostimulation treatment methods, contributing significantly to the broader neuroscience and neurological therapeutics field.This project is jointly funded by the Communications, Circuits and Sensing Systems (CCSS) Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在全球大流行之前,焦虑和抑郁等心理和神经健康状况已经以惊人的速度增加。现在,根据世界卫生组织(WHO)的说法,此类疾病的大流行病发生率在全球范围内增加了25-35%,WHO呼吁所有国家提高心理健康服务和支持。这凸显了对神经系统疾病的更容易获得和侵入性的治疗选择的需求。被证明有效治疗各种神经系统疾病,诸如经颅磁刺激(TMS)等电神经刺激方法(例如经颅磁刺激(TMS))。 TMS使用磁场诱导的电流的短脉冲脉冲来刺激大脑。但是,TMS需要通常在医院环境中发现的稳定的高功率系统。 TMS治疗计划涉及每天的医院探访三周,或者有时在一天内进行多次治疗,这限制了已经管理抑郁症或焦虑症状的患者的可及性,例如社交戒断和睡眠不规则,破坏了日常日常情况。此外,对于农村或低收入人口统计的人来说,定期参加面对面治疗可能是不可行的。但是,以其高强度和极窄的脉冲宽度为特色的纳秒电脉冲(NEP)已成为各种神经系统疾病的有前途的治疗方法。 NEP在刺激细胞和神经方面表现出了显着的功效而不会造成伤害,并且有可能有助于减少医院就诊需求并大大增加可及性的潜力。该项目旨在了解传统NEP的局限性,并找到解决方案以使其适应较小的设备。该项目将生产出纳入研究发现的医疗装置原型,从而扩大了患者无创,可访问的神经治疗方案的范围。该项目的K-12外展与内华达山脉的旅程合作,并在家庭科学之夜和成人计划中使用生物传感器,将通过其反馈专业知识来增强STEM教育。内部的NEPS具有实质性的神经调节潜力,能够复制生理刺激,以对神经疾病的非侵入性治疗。尽管具有潜力,但NEP由于穿透深度的限制和通过人体或动物体的信号失真而遇到了非侵入性体内应用中的障碍。这项研究的目的是(1)了解传统NEP的局限性并找到解决方案以使其适应较小的设备,(2)解决由不同解剖学差异引起的信号扭曲问题,(3)开发医疗设备原型,该原型将解决方案纳入上述挑战。利用NEP的潜力,该研究将采用RF信号来增强穿透性,利用深度学习技术进行解剖补偿,并结合更宽的脉冲宽度和MHz脉冲重复速率,以降低阈值电压。使用数字生成的RF NEP可以代表神经刺激方法的重大创新转移。这种非侵入性方法可以更深入地渗透到动物体内,同时包括满足特定需求的特定波形。将这些创新解决方案集成到新的医疗设备的设计中,这是这项研究的转化潜力。该项目预计会提高理论知识和神经刺激治疗方法的具体,有形的改进,这对更广泛的神经科学和神经学治疗领域有很大的贡献。该项目由通信,电路和传感系统(CCSS)计划(CCS)计划和既定的启发竞争性研究(EPSCSERITY nation nat te and epscor and the sef)共同资助。通过使用基金会的知识分子和更广泛影响的评论标准来通过评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ji YOON其他文献
Ji YOON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
剪接因子SNRPA1通过调节R-loop稳态影响肺腺癌发展进程的机制研究
- 批准号:32360143
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
企业层面视角下自由贸易协定条款深度对出口高质量发展的影响:模型拓展与量化分析
- 批准号:72363013
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
新型城镇化与区域协调发展的机制与治理体系研究
- 批准号:72334006
- 批准年份:2023
- 资助金额:167 万元
- 项目类别:重点项目
亦正亦邪Sirt6:Sirt6调控谷氨酰胺代谢促进肝内胆管癌发生发展的分子机制研究
- 批准号:82372667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
7T MRI as a potential tool for detection of pathology in Alzheimer's disease
7T MRI 作为检测阿尔茨海默病病理的潜在工具
- 批准号:
10349883 - 财政年份:2022
- 资助金额:
$ 48.79万 - 项目类别:
Non-contrast 3D T1p Mapping for Myocardial Fibrosis Quantification of Pediatric Cardiomyopathy Patients
用于小儿心肌病患者心肌纤维化定量的非对比 3D T1p 映射
- 批准号:
10351919 - 财政年份:2022
- 资助金额:
$ 48.79万 - 项目类别:
Understanding methionine metabolism and its therapeutic potential in cancer
了解蛋氨酸代谢及其在癌症中的治疗潜力
- 批准号:
10554637 - 财政年份:2022
- 资助金额:
$ 48.79万 - 项目类别:
7T MRI as a potential tool for detection of pathology in Alzheimer's disease
7T MRI 作为检测阿尔茨海默病病理的潜在工具
- 批准号:
10704500 - 财政年份:2022
- 资助金额:
$ 48.79万 - 项目类别:
Metal-Mediated C-H Radiofluorination for Rapid Access to PET Imaging Agents
金属介导的 C-H 放射性氟化用于快速获得 PET 成像剂
- 批准号:
10369752 - 财政年份:2022
- 资助金额:
$ 48.79万 - 项目类别: