Non-contrast 3D T1p Mapping for Myocardial Fibrosis Quantification of Pediatric Cardiomyopathy Patients
用于小儿心肌病患者心肌纤维化定量的非对比 3D T1p 映射
基本信息
- 批准号:10351919
- 负责人:
- 金额:$ 9.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdultAffectArchitectureArrhythmiaBrainBreathingCardiacCardiomyopathiesChildChildhoodClinicalClinical MedicineContrast MediaDataData AnalysesDevelopmentDiffuseDiseaseFibrosisFinancial costFunctional disorderGadoliniumGeneral AnesthesiaGoldGrantHandHealthHeartHeart DiseasesHypertrophic CardiomyopathyImageImage EnhancementImaging TechniquesLeft ventricular structureManualsMarfan SyndromeMeasurementMeasuresMyocarditisNaturePatient CarePatientsPediatric CardiomyopathyPhysiologic pulsePopulationPreparationRenal functionResearchResolutionRight ventricular structureRiskSamplingScanningScreening procedureSex DifferencesSpeedTNFSF15 geneTachycardiaTechniquesTechnologyTestingThickTimeTrainingTraining ActivityWorkage differenceallograft rejectionautomated image analysisautomated segmentationbasecardiac magnetic resonance imagingcareerclinical translationcongenital heart disordercoronary fibrosisdeep learningextracellularheart allograftimage reconstructioninnovationolder patientpatient populationpediatric patientsprototyperacial differenceradio frequencyreconstructionresearch clinical testingstudy populationsudden cardiac deathyoung adult
项目摘要
PROJECT SUMMARY
The development of myocardial fibrosis is associated with nearly all forms of pediatric
heart disease including hypertrophic cardiomyopathy, congenital heart disease, diastolic
dysfunction, arrhythmia, myocarditis, and sudden cardiac death. Despite the pervasive nature of
myocardial fibrosis, the current technology available to detect fibrosis is suboptimal for studying
pediatric cardiomyopathy. Cardiac MRI (CMR) is the gold standard noninvasive screening tool to
detect both diffuse and focal fibrosis, through extracellular volume (ECV) and late gadolinium
enhancement (LGE) imaging, respectively. Unfortunately, both ECV and LGE CMR require the
administration of a gadolinium-based contrast agent (GBCA), which accumulates in the brain
even when renal function is normal, including in children. In addition, traditional CMR requires
subjects to hold their breath for accurate imaging. However, many pediatric patients cannot
adequately hold their breath and so are put under general anesthesia (GA), which is not ideal as
GA poses an additional health risk and significant financial cost. Furthermore, the current 2D
techniques for fibrosis imaging have insufficient spatial resolution, and thus are only able to
acquire data in sections of the left ventricle (6-10 mm thick) of the heart, completely missing
fibrosis information in the right ventricle (3-5 mm thick), which is known to be the substrate for
some tachycardia arrhythmias. Therefore,
breathing, T1ρ mapping is a
promising non-contrast CMR technique that can be used to detect both focal and diffuse
myocardial fibrosis. Despite its enormous potential for assessment of myocardial fibrosis in
pediatric patients, cardiac T1ρ mapping suffers from several technical limitations: (a) poor spatial
resolution, (b) long scan time (up to 18 min), and (c) undeveloped pipeline for clinical integration.
Additionally, the volumetric cardiac T1ρ mapping sequences that have been developed have only
been tested on adult patients, and in very few subjects (n < 15). Therefore, in this study, I seek to
address these limitations of 3D cardiac T1ρ mapping by (1) using innovative k-space sampling
with deep learning for achieving unprecedented image quality with acceptable scan and
reconstruction time, (2) implementing deep learning to automate image analysis and fibrosis
quantification to make the information readily accessible for patient care, and (3) scanning a large
population of pediatric patients to make this the most comprehensive T1ρ mapping study to date.
there is a strong need to develop a non-contrast, free-
volumetric imaging test for detecting fibrosis in pediatric patients.
项目概要
心肌纤维化的发展与几乎所有形式的儿科疾病有关
心脏病,包括肥厚性心肌病、先天性心脏病、舒张性心脏病
尽管心律失常、心肌炎和心源性猝死很普遍。
心肌纤维化,目前可用于检测纤维化的技术对于研究而言并不理想
小儿心脏 MRI (CMR) 是诊断小儿心肌病的金标准无创筛查工具。
通过细胞外体积 (ECV) 和晚期钆检测弥漫性和局灶性纤维化
不幸的是,ECV 和 LGE CMR 分别需要增强 (LGE) 成像。
施用钆基造影剂(GBCA),该造影剂会在大脑中积聚
即使肾功能正常,包括儿童。此外,传统的 CMR 也需要进行。
受试者屏住呼吸以获得准确的成像然而,许多儿科患者无法做到这一点。
充分屏住呼吸,因此接受全身麻醉 (GA),这并不理想,因为
此外,当前的 2D 会带来额外的健康风险和巨大的财务成本。
纤维化成像技术的空间分辨率不足,因此只能
获取心脏左心室(6-10 毫米厚)部分的数据,完全缺失
右心室(3-5 毫米厚)的纤维化信息,已知这是右心室纤维化的基础
一些心动过速心律失常。
呼吸,T1ρ 映射是
有前景的非对比 CMR 技术,可用于检测局灶性和弥漫性
尽管它在评估心肌纤维化方面具有巨大的潜力。
对于儿科患者,心脏 T1ρ 映射存在一些技术限制:(a) 空间较差
分辨率,(b) 扫描时间长(长达 18 分钟),以及 (c) 尚未开发的临床整合流程。
此外,已开发的体积心脏 T1ρ 映射序列仅具有
已在成年患者和极少数受试者(n < 15)中进行了测试。因此,在本研究中,我寻求
通过 (1) 使用创新的 k 空间采样解决 3D 心脏 T1ρ 映射的这些局限性
通过深度学习实现前所未有的图像质量和可接受的扫描和
重建时间,(2)实施深度学习以自动化图像分析和纤维化
量化,以便患者护理能够轻松获取信息,以及 (3) 扫描大图
儿科患者群体使这项研究成为迄今为止最全面的 T1ρ 映射研究。
强烈需要开发一种非对比的、自由的
用于检测儿科患者纤维化的体积成像测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suvai Gunasekaran其他文献
Suvai Gunasekaran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suvai Gunasekaran', 18)}}的其他基金
Non-contrast 3D T1p Mapping for Myocardial Fibrosis Quantification of Pediatric Cardiomyopathy Patients
用于小儿心肌病患者心肌纤维化定量的非对比 3D T1p 映射
- 批准号:
10579868 - 财政年份:2022
- 资助金额:
$ 9.87万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 9.87万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 9.87万 - 项目类别:
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
- 批准号:
10724152 - 财政年份:2023
- 资助金额:
$ 9.87万 - 项目类别: