CAREER: Reliable and Accelerated Deep Neural Networks via Co-Design of Hardware and Algorithms
职业:通过硬件和算法的协同设计实现可靠且加速的深度神经网络
基本信息
- 批准号:2340516
- 负责人:
- 金额:$ 59.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2028-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence (AI) systems are integral to a broad spectrum of applications, encompassing safety-critical and life-critical domains. However, hardware failures and design bugs have been observed during AI system deployment, leading to system malfunctions and potential consequences such as financial losses, reduced productivity, and even loss of human life. Furthermore, these issues directly impact hardware security and system sustainability. Existing solutions aimed at addressing these issues suffer from one or both of the following limitations: (1) high costs in terms of execution time, power consumption, hardware footprint, and/or data storage resources; and (2) limited coverage, as existing solutions are only capable of addressing a subset of these problems. This project will overcome these limitations through a fresh set of novel hardware-algorithm co-design approaches to simultaneously minimize costs and enhance coverage, advancing the state-of-the-art through an interdisciplinary combination of knowledge in computer architecture, robust system design, and machine learning. Successful completion of this project promises to mark a significant leap forward for AI systems, enabling them to be more efficient, reliable, trustworthy, and sustainable. Additionally, the project will enhance computer architecture education through creative visualization means and workshops especially targeting students in under-resourced high schools. The project also also places emphasis on promoting diversity and facilitating technology transfer.This project encompasses three interconnected thrusts. The first thrust focuses on creating end-to-end approaches to fundamentally understand the impact of hardware failures and bugs on advanced deep learning workloads, mitigate these challenges through hardware-algorithm co-design, and incorporate a user study to explore adaptive architectural solutions tailored to individual users' needs. The second thrust targets the design of AI hardware for fine-grained mixed-precision deep neural networks. This involves creating a co-design framework to facilitate the co-evolution of hardware and software, optimizing accelerators for these networks, and simultaneously tailoring network models to these accelerators through a feedback loop, addressing susceptibility to design bugs. The last thrust explores an innovative approach for generating network parameters instead of storing them. The parameter generation algorithm will be integrated into training algorithms to optimize network accuracy and minimize area, power, and storage costs, while also addressing reliability and security threats posed by system memories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能 (AI) 系统是广泛应用的组成部分,涵盖安全关键和生命关键领域。然而,在人工智能系统部署过程中,出现了硬件故障和设计缺陷,导致系统故障和潜在后果,例如财务损失、生产力下降,甚至人员伤亡。此外,这些问题直接影响硬件安全和系统可持续性。旨在解决这些问题的现有解决方案受到以下一个或两个限制:(1)执行时间、功耗、硬件占用空间和/或数据存储资源方面的成本高; (2) 覆盖范围有限,因为现有解决方案只能解决这些问题的一部分。该项目将通过一套全新的硬件算法协同设计方法克服这些限制,同时最大限度地降低成本并扩大覆盖范围,通过计算机体系结构、强大的系统设计、跨学科知识组合来推进最先进的技术。和机器学习。 该项目的成功完成有望标志着人工智能系统的重大飞跃,使其更加高效、可靠、值得信赖和可持续。此外,该项目将通过创造性的可视化手段和研讨会,特别是针对资源贫乏高中的学生,加强计算机架构教育。该项目还强调促进多样性和促进技术转让。该项目包含三个相互关联的主旨。第一个重点是创建端到端方法,从根本上了解硬件故障和错误对高级深度学习工作负载的影响,通过硬件算法协同设计缓解这些挑战,并结合用户研究来探索量身定制的自适应架构解决方案以满足个人用户的需求。第二个重点是针对细粒度混合精度深度神经网络的人工智能硬件设计。这涉及创建一个协同设计框架以促进硬件和软件的协同进化,优化这些网络的加速器,并通过反馈循环同时为这些加速器定制网络模型,解决设计错误的敏感性。最后一个主旨探索了一种生成网络参数而不是存储它们的创新方法。参数生成算法将集成到训练算法中,以优化网络精度并最大限度地减少面积、功耗和存储成本,同时还解决系统内存带来的可靠性和安全威胁。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yanjing Li其他文献
The Genus Chrysosporium: A Potential Producer of Natural Products
金孢属:天然产物的潜在生产者
- DOI:
10.3390/fermentation9010076 - 发表时间:
2023-01 - 期刊:
- 影响因子:0
- 作者:
Yifei Wang;Xiaowen Yang;Yanjing Li;Bo Wang;Ting Shi - 通讯作者:
Ting Shi
Concurrent autonomous self-test for uncore components in system-on-chips
片上系统中非核心组件的并发自主自测试
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Yanjing Li;O. Mutlu;Donald S. Gardner;S. Mitra - 通讯作者:
S. Mitra
Improvement of the activation of lipase from Candida rugosa following physical and chemical immobilization on modified mesoporous silica
改性介孔二氧化硅物理和化学固定化假丝酵母脂肪酶活性的提高
- DOI:
10.1016/j.msec.2014.09.026 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Chunfeng Wang;Yanjing Li;Guowei Zhou;Xiaojie Jiang;Yunqiang Xu;Zhaosheng Bu - 通讯作者:
Zhaosheng Bu
Time-Reduced Model for Multilayer Spiking Neural Networks
- DOI:
10.11648/j.ijse.20230701.11 - 发表时间:
2023-02 - 期刊:
- 影响因子:0
- 作者:
Yanjing Li - 通讯作者:
Yanjing Li
Robust System Design
稳健的系统设计
- DOI:
10.2197/ipsjtsldm.4.2 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
S. Mitra;Hyung;Ted Hong;Young Moon Kim;Hsiao;L. Leem;Yanjing Li;D. Lin;E. Mintarno;Diana Mui;Sung;N. Patil;Hai Wei;Jie Zhang - 通讯作者:
Jie Zhang
Yanjing Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yanjing Li', 18)}}的其他基金
Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
- 批准号:
2321492 - 财政年份:2023
- 资助金额:
$ 59.99万 - 项目类别:
Continuing Grant
E2CDA: Type I: Collaborative Research: Electronic-Photonic Integration Using the Transistor Laser for Energy-Efficient Computing
E2CDA:类型 I:协作研究:使用晶体管激光器实现节能计算的电子光子集成
- 批准号:
1640192 - 财政年份:2016
- 资助金额:
$ 59.99万 - 项目类别:
Continuing Grant
相似国自然基金
基于相依竞争失效的载荷分配系统加速寿命试验可靠性研究
- 批准号:
- 批准年份:2020
- 资助金额:33 万元
- 项目类别:地区科学基金项目
不规则应力载荷区域的加工中心电主轴可靠性加速试验优化设计理论与方法
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
小子样多源异种不确定信息下基于故障物理的主轴轴承寿命和可靠性评估方法
- 批准号:51875089
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
LED照明灯具的色漂退化机理及其可靠性建模研究
- 批准号:61865004
- 批准年份:2018
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
基于竞争失效的数控系统PCB性能退化可靠性建模与评估研究
- 批准号:51505407
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
- 批准号:
BB/X01858X/1 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Research Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
STTR Phase I: A Reliable and Efficient New Method for Satellite Attitude Control
STTR第一阶段:可靠、高效的卫星姿态控制新方法
- 批准号:
2310323 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
CAREER: Graded and Reliable Aerosol Deposition for Electronics (GRADE): Understanding Multi-Material Aerosol Jet Printing with In-Line Mixing
职业:电子产品的分级且可靠的气溶胶沉积 (GRADE):了解通过在线混合进行多材料气溶胶喷射打印
- 批准号:
2336356 - 财政年份:2024
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant