CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
基本信息
- 批准号:2339723
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2029-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The proposed research will impact society through the innovation to realize new device technologies. A program to train next-generation researchers and increase underrepresented groups’ participation will be pursued. A multi-year mentoring program, which will provide research experience for undergraduate students in the principal investigator’s lab from minority serving institutions will be established through this research program. Outreach programs for the public will be developed and will be targeted towards K-12 students belonging to underrepresented minorities in southwestern Pennsylvania area. In parallel, a course to teach fundamental concepts of quantum physics through hands-on experiments will be developed. This course will provide education to produce the next-generation quantum workforce for emergent industries in the United States.Emergent phenomena in novel quantum materials are key to enable transformative devices for computing, data storage, and high-frequency electronics. For magnetic memory devices, the proposed research will enable a much sought after two-terminal spin-orbit torque magnetic memory device for energy efficient and ultra-compact data storage. To build an industry competitive magnetic memory device, a small footprint hardware node is desired to implement a dense network of storage elements. However, spin-orbit torque driven magnetic memory devices considered so far in the field have three terminals, wherein a magnetic tunnel junction is integrated on top of spin-source material to read the state through tunnel-magnetoresistance effect. The spin-orbit torque driven magnetic memory devices are envisioned to be highly energy-efficient because spin current induced by spin Hall effect phenomena is more efficient at magnetization manipulation than spin-polarized current used in magnetic tunnel junction-based devices. However, a spin-orbit torque based two-terminal device has been critically missing. This research program will demonstrate a prototype spin-orbit torque based two-terminal device for magnetic memory applications in which the magnetic state is read using a new kind of magnetoresistance owing to out-of-plane spin current in Weyl semimetals. Additionally, the electrical tuning of magnetic interactions in two-dimensional magnets can enable agile microwave devices, such as tunable band-pass filters. Microwave filters based on spin-wave excitations in magnetic materials have the potential to realize functionalities such as compactness, planar, and frequency-agility. However, achieving an electrical turnability of spin-wave excitations, which decides the pass and rejection frequency of a magnet based band-pass filter, is highly desired for microwave devices but it remains challenging. This research program will explore and demonstrate gate voltage tuning of magnetic anisotropy in two-dimensional magnets for prototyping electric-field tunable band-pass filter devices. A research program aimed at experimental demonstration of transformative device functionalities for next-generation memory and high-frequency devices using emergent spin-phenomena in Weyl semimetals and two-dimensional magnets will be pursued. The specific scientific goals of this research program are twofold: (1) A two-terminal spin-orbit torque based magnetic memory unit cell will be demonstrated, wherein the information is stored in the magnetic state of ferromagnet with perpendicular magnetic anisotropy, the magnetic state is written by the spin-orbit torque phenomena, and the state is read through a new type of magnetoresistance owing to tilted spin current in Weyl semimetals; (2) An electric-field tunable band-pass filters based on two-dimensional magnets will be demonstrated. The electric field tunability of magnetic anisotropy to tune the magnetic resonance of a magnet will be explored, which is the key characteristic of a frequency agile band-pass filter because the application of electrical field will shift the location of resonance frequency to set up the pass and rejection band of the proposed microwave device. For proposed band-pass filters, insertion loss, pass-filter center frequency, operational bandwidth, and other device parameters will be characterized.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拟议的研究将通过创新来实现新的设备技术,从而影响社会,并将开展一项旨在培训下一代研究人员并增加代表性不足群体参与的计划,该计划将为本科生提供研究经验。少数族裔机构的首席研究员实验室将通过该研究计划建立,面向公众的推广计划将针对宾夕法尼亚州西南部地区代表性不足的少数族裔的 K-12 学生。同时,还将开设一门教授基本概念的课程。量子物理学通过本课程将为美国新兴产业培养下一代量子劳动力提供教育。新型量子材料中的新兴现象是实现计算、数据存储和高科技革命性设备的关键。对于磁存储器件,拟议的研究将实现备受追捧的两端自旋轨道扭矩磁存储器件,以实现节能和超紧凑的数据存储,从而构建具有行业竞争力的磁存储器件,即占用空间小的硬件。节点需要实现密集的存储网络然而,迄今为止,该领域考虑的自旋轨道扭矩驱动磁存储器件具有三个端子,但是磁性隧道结集成在自旋源材料的顶部,以通过隧道磁阻效应读取状态。扭矩驱动的磁存储器件被认为是高能效的,因为自旋霍尔效应现象引起的自旋电流在磁化操纵方面比基于磁性隧道结的器件中使用的自旋极化电流更有效。二端设备该研究计划将展示一种用于磁存储应用的基于自旋轨道扭矩的原型器件,其中利用韦尔半金属中的面外自旋电流产生的新型磁阻来读取磁性状态。此外,二维磁体中磁相互作用的电调谐可以实现灵活的微波器件,例如基于磁性材料中自旋波激励的可调谐带通滤波器,有可能实现诸如紧凑性、然而,实现自旋波激励的电可调谐性(决定基于磁体的带通滤波器的通过和抑制频率)对于微波器件来说是非常期望的,但该研究项目仍然具有挑战性。探索并演示二维磁体中磁各向异性的栅极电压调谐,用于原型化电场可调谐带通滤波器器件 该研究计划旨在利用新兴技术对下一代存储器和高频器件的变革性器件功能进行实验演示。该研究计划的具体科学目标有两个:(1)将展示基于两端自旋轨道扭矩的磁存储单元,但信息是未知的。存储在具有垂直磁各向异性的铁磁体的磁态中,磁态由自旋轨道扭矩现象写入,并且由于倾斜自旋电流而通过新型磁阻读取状态。 Weyl半金属;(2)将展示基于二维磁体的电场可调谐带通滤波器,以探索磁各向异性的电场可调谐性以调谐磁体的磁共振,这是该滤波器的关键特性。频率捷变带通滤波器,因为电场的应用将改变谐振频率的位置,以设置所提出的微波器件的通带和阻带对于所提出的带通滤波器、插入损耗、通滤波器中心频率,操作带宽,以及其他设备参数将被表征。该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simranjeet Singh其他文献
Erratum to: Potential of Plant Growth Promoting Traits by Bacteria Isolated from Heavy Metal Contaminated Soils
勘误表:从重金属污染土壤中分离的细菌促进植物生长特性的潜力
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:2.7
- 作者:
Vijay Kumar;Simranjeet Singh;Joginder Singh;Niraj Upadhyay - 通讯作者:
Niraj Upadhyay
Strength of the dominant scatterer in graphene on silicon oxide
氧化硅上石墨烯中主要散射体的强度
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
J. Katoch;Duy Le;Simranjeet Singh;R. Rao;T. Rahman;M. Ishigami - 通讯作者:
M. Ishigami
Efficient synthesis and characterization of non-toxic glyphosate derivatives as eco-friendly herbicides
生态友好型除草剂无毒草甘膦衍生物的高效合成和表征
- DOI:
10.1016/j.crgsc.2021.100100 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jatinder Pal Kaur Gill;Simranjeet Singh;N. Sethi;D. S. Dhanjal;A. Mohan;H. Sarma;R. Prasad;Joginder Singh - 通讯作者:
Joginder Singh
A new approach for somnolence detection & analysis based on LabVIEW
嗜睡检测的新方法
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Simranjeet Singh;Dr.Naveen Dhillon;Prof.Karamjeet Singh - 通讯作者:
Prof.Karamjeet Singh
A Study of Nutrient Removal Efficiency from Simulated Agriculture Run-off (SAR) Using Constructed Wetland Technology
利用人工湿地技术模拟农业径流 (SAR) 的养分去除效率研究
- DOI:
10.46488/nept.2022.v21i03.044 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Simranjeet Singh;A. Kaushik;B. Sharma - 通讯作者:
B. Sharma
Simranjeet Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simranjeet Singh', 18)}}的其他基金
Non-volatile magnetic memory devices based on field-free spin-orbit torque switching of perpendicularly polarized magnets.
基于垂直极化磁体的无场自旋轨道扭矩切换的非易失性磁存储器件。
- 批准号:
2208057 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Magnetization manipulation and antiferromagnetic dynamics driven by spin current in Weyl semimetals
外尔半金属中自旋电流驱动的磁化操纵和反铁磁动力学
- 批准号:
2210510 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
SoLoMo情形下“下一个最佳购物建议”(NBO)对消费者决策的影响机制研究
- 批准号:71302093
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
- 批准号:
2339753 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: LoRa Enabled Space-air-ground Integrated Networks for Next-Generation Agricultural IoT
职业生涯:LoRa 支持下一代农业物联网的天地一体化网络
- 批准号:
2338976 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Next Generation Online Resource Allocation
职业:下一代在线资源分配
- 批准号:
2340306 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant