CAREER: Controlling the Deformability of Quantum Dots Solids for Wearable NIR Optoelectronics

职业:控制可穿戴近红外光电器件的量子点固体的变形能力

基本信息

项目摘要

NontechnicalWearable electronics that emit and detect near-infrared (IR) light hold promise for affordable and non-invasive healthcare, including early detection of disease and light therapy. In order to adapt to the natural movements of the skin, materials must maintain their structural integrity and electronic properties while being deformed or stressed. Many materials active in the near-IR are rigid and brittle, and thus cannot be used for wearable devices. The discovery of new materials for near-IR electronics is hindered due to a lack of fundamental understanding of how they behave under stress or strain. This project directly addresses that challenge. The PI will synthesize and systematically investigate composites that combine the strong near-IR optical response of quantum dots with the attractive electronic and physical properties of organic semiconductors. Through seamless integration of these materials, the PI will control their interactions and investigate their mechanical, optical, and electronic behavior. The fundamental understanding of molecular interactions developed through this project will enable breakthroughs in flexible electronics for healthcare, soft robotics, and in other fields. The PI is committed to broadening participation in STEM through strengthening pathway for students from high school through postgraduate studies. Education efforts will engage high school students in learning about nanomaterials and nanotechnology. The PI will create a new undergraduate course with interactive STEM outreach, and host a summer undergraduate research intern, thereby fostering diversity, equity, and inclusion in STEM.TechnicalThis project aims to better understand how colloidal quantum dot (CQD) solids respond to strain, by developing crucial structure-property relationships to reveal how the molecular-level chemical and structural interactions between CQD and conjugated polymers (CP) impact the mechanical, optical, and electronic properties of the resulting heterostructures, and importantly how these key properties respond to mechanical deformation. However, it is currently unclear how the molecular-level chemical and structural interactions between these two components impact the carrier transport and recombination process, their ability to deform, and, more critically, how the chemical, structural, and optoelectronic properties change under strain. This project develops critical fundamental understandings of the mechano-optoelectronic properties of the CQD-CP heterostructures by (1) investigating the chemical and structural interaction between CQD and CP and their impact on the charge carrier transport and recombination characteristics of the CQD-CP heterostructures with different interfacial chemistry; (2) understanding the changes of the key chemical, structural and optoelectronic properties under strain and elucidate the underlying mechanism. To achieve this, the research team will first utilize a unique ligands exchange strategy to construct CQD - CP heterostructures with controllable interfaces at the molecular level. The research team will then employ X-ray photoelectron and X-ray diffraction spectroscopy, transmission electron spectroscopy, steady and time-resolved optical spectroscopy, and electrical characterization, with and without applied strain, to provide insights into how structure, charge transport, and recombination are impacted by the interfacial chemistry, and how they change under strain. The research activities provide fundamental knowledge that is foundational toward the rational design of CQD-based wearable optoelectronics and unlock their potential in personal healthcare, and soft robotics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
发射和检测近红外(IR)光的非技术衣电子设备对负担得起的和无创的医疗保健有望,包括早期发现疾病和光治疗。为了适应皮肤的自然运动,材料必须在变形或压力的同时保持其结构完整性和电子特性。许多活跃在近红外的材料都是刚性和脆性的,因此不能用于可穿戴设备。由于缺乏对它们在压力或压力下的表现缺乏根本性的理解,因此阻碍了近红外电子产品的新材料。该项目直接解决了这一挑战。 PI将合成并系统地研究将量子点的强近IR光学响应与有机半导体的有吸引力的电子和物理特性相结合的复合材料。通过这些材料的无缝整合,PI将控制其相互作用并研究其机械,光学和电子行为。通过该项目开发的分子相互作用的基本理解将使柔性电子设备在医疗保健,软机器人技术和其他领域中取得突破。 PI致力于通过加强高中生通过研究生学习来扩大STEM的参与。教育工作将吸引高中生学习纳米材料和纳米技术。 PI将创建一门新的本科课程,并通过互动型茎外展览,并主持夏季的本科研究实习生,从而促进多样性,公平性和包含在STEM中的多样性,公平性和包含。 (CP)影响所得异质结构的机械,光学和电子特性,重要的是这些关键特性如何响应机械变形。但是,目前尚不清楚这两个组件之间的分子级化学和结构相互作用如何影响载体的传输和重组过程,它们变形的能力以及更重要的是在应变下的化学,结构和光电特性如何变化。该项目通过(1)研​​究CQD和CP之间的化学和结构相互作用,对CQD-CP异质结构的机械 - 呼应性特性进行了关键的基本理解,以及CQD-CP异质结构与CQD-CP异质结构与不同插入化学化学的CQD-CP异质结构的影响; (2)了解应变下关键化学,结构和光电特性的变化并阐明了基本机制。为了实现这一目标,研究团队将首先利用独特的配体交换策略来构建具有分子水平可控接口的CQD -CP异质结构。然后,研究团队将采用X射线光电子和X射线衍射光谱,透射电子光谱,稳定和时间分辨的光谱谱图以及具有和没有应用应变的电特性表征,以洞悉结构,电荷运输和重组如何受到界面化学的影响以及它们在应变下的影响。研究活动提供了基本知识,这些知识旨在基于CQD基于CQD的可穿戴光电学的合理设计,并在个人医疗保健方面释放了其潜力,以及软机器人技术。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准来通过评估来通过评估来支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiwen Gong其他文献

Quantum Dots in Perovskites: Liquid Heteroepitaxy for Optoelectronics
  • DOI:
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiwen Gong
  • 通讯作者:
    Xiwen Gong

Xiwen Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

高马赫数发动机密封界面液膜急变跨速汽化机理与型槽热平衡控制设计
  • 批准号:
    52375212
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于矩阵方法的电价博弈分析与控制策略研究
  • 批准号:
    62303170
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
  • 批准号:
    52377215
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
分布式电驱动智能车辆主动交互机理及控制机制研究
  • 批准号:
    52372377
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
面向在轨大型结构的空间机器人多机协同接管控制方法研究
  • 批准号:
    52305036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
  • 批准号:
    BB/Y005694/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319849
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: Rational Design of Dual-Functional Photocatalysts for Synthetic Reactions: Controlling Photosensitization and Reaction with a Single Nanocrystal
职业:用于合成反应的双功能光催化剂的合理设计:用单个纳米晶体控制光敏化和反应
  • 批准号:
    2339866
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了