Overcoming Programming Barriers for Non-Computing Majors in Data Science
克服数据科学非计算专业的编程障碍
基本信息
- 批准号:2336929
- 负责人:
- 金额:$ 74.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to serve the national interest by strengthening data science education for students in non-computing disciplines in order to meet the national workforce demands for data scientists across many disciplines. The requirement for computing-related prerequisites and programming tasks can be a barrier for non-computing students with other strong data skills to enter the data science workforce. Results from a prior IUSE project indicate the effectiveness of increasing student interest and learning outcomes through in-depth hands-on practice with no or little coding involved, supported by a web-based learning platform. This Level II IUSE:EDU Engaged Student Learning track project is a collaborative effort among Rochester Institute of Technology, Howard University, and Bryn Mawr College that will upgrade the learning platform to provide comprehensive support for both teaching and learning. The project will also develop modules tailored to non-computing students, evaluate the effectiveness of the platform and the curricular materials at the three sites, and facilitate adoption of the project's products at other institutions. The overarching goal of this project is to provide effective curricular materials to overcome the programming barriers, expose students to various data science topics, and teach them how to solve data problems in the context of their own disciplines. The project will: (1) develop an integrated learning platform to support both teaching and learning; (2) develop a set of course modules covering important data science topics with hands-on assignments designed for different disciplines; (3) deploy and evaluate the platform and course modules at three participating institutions including an HBCU and a women’s liberal arts college; and (4) conduct a study to investigate if the impact of the developed platform and course modules on student learning is independent from students' prior computing experience, discipline, gender, and demographics. The project modules can be flexibly integrated into an existing course or be combined together and offered as a regular course, increasing their adaptability to other institutions. This project will directly benefit more than 1500 students enrolled in the targeted 19 courses from more than 8 different majors at the three sites during the project cycle. The study conducted in this project will provide insights on how to offer effective and inclusive data science education. The project will also provide several professional development opportunities (online tutorials, information sessions, regional and conference workshops) and project outcomes and materials will be widely disseminated via multiple channels. The NSF IUSE: EDU Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过加强对非计算学科的学生的数据科学教育来满足国家利益,以满足许多学科的数据科学家的国家劳动力需求。与计算相关的先决条件和编程任务的要求可能是对具有其他强大数据技能的非计算学生进入数据科学工作人员的障碍。先前的IUSE项目的结果表明,通过基于Web的学习平台的支持,通过深入的动手实践来增加学生兴趣和学习成果的有效性。这二级IUSE:EDU订婚的学生学习轨道项目是罗切斯特理工学院,霍华德大学和Bryn Mawr学院的合作努力,该学院将升级学习平台,为教学和学习提供全面的支持。该项目还将开发针对非计算学生量身定制的模块,评估平台和三个站点的课程材料的有效性,并促进在其他机构中采用该项目的产品。该项目的总体目标是提供有效的课程材料来克服编程障碍,使学生了解各种数据科学主题,并教他们如何在自己的学科中解决数据问题。该项目将:(1)开发一个综合学习平台来支持教学和学习; (2)开发一组课程模块,该模块涵盖了重要的数据科学主题,该主题具有为不同学科设计的动手作业; (3)在包括HBCU和女子文科学院在内的三个参与机构中部署和评估平台和课程模块; (4)进行一项研究,以调查开发平台和课程模块对学生学习的影响是否与学生先前的计算经验,纪律,性别和人口统计学无关。可以将项目模块灵活地集成到现有课程中,也可以合并为常规课程,从而提高了对其他机构的适应性。该项目将直接受益于在项目周期中三个地点的8个不同专业的有针对性的19个课程中招收的1500多名学生。该项目进行的研究将提供有关如何提供有效和包容性数据科学教育的见解。该项目还将提供一些专业发展的机会(在线教程,信息会议,区域和会议研讨会),项目成果和材料将通过多个渠道广泛传播。 NSF IUSE:EDU计划支持研发项目,以提高所有学生STEM教育的有效性。通过参与的学生学习轨道,该计划支持了承诺实践和工具的创建,探索和实施。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估审查标准,被认为是珍贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xumin Liu其他文献
Vectorization Method on the Color Cloud Image
彩色云图的矢量化方法
- DOI:
10.14257/ijmue.2015.10.12.31 - 发表时间:
2015-12 - 期刊:
- 影响因子:0
- 作者:
Xumin Liu;Cong Zhang;Sen Na;Weixiang Xu - 通讯作者:
Weixiang Xu
Peptide Sequence Tag-Based Blind Identification-based SVM Model
基于肽序列标签的盲识别SVM模型
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Hui Li;Chunmei Liu;Xumin Liu;M. Diakite;L. Burge;A. Yakubu;W. Southerland - 通讯作者:
W. Southerland
Research on 3D Visualization Method of Seismic Data
地震资料3D可视化方法研究
- DOI:
10.14257/ijsip.2016.9.5.39 - 发表时间:
2016-05 - 期刊:
- 影响因子:0
- 作者:
Xumin Liu;Dawei Li;Yongxiu Xu;Weixiang Xu - 通讯作者:
Weixiang Xu
Hands-on Assignments for Practical Data Science Education to Non-Computing Majors
非计算专业实用数据科学教育的实践作业
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xumin Liu;Erik Golen - 通讯作者:
Erik Golen
Improved Computing Method of Mutual Information in Medical Image Registration
医学图像配准中互信息的改进计算方法
- DOI:
10.14257/ijsip.2016.9.4.36 - 发表时间:
2016-04 - 期刊:
- 影响因子:0
- 作者:
Xumin Liu;Zilong Duan;Weixiang Xu - 通讯作者:
Weixiang Xu
Xumin Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xumin Liu', 18)}}的其他基金
Developing a Hands-on Data Science Curriculum for Non-Computing Majors
为非计算专业开发实践数据科学课程
- 批准号:
2021287 - 财政年份:2020
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
Collaborative Research: Developing Course Modules to Teach Service-Oriented Programming through Exemplification and Visualization
协作研究:开发课程模块,通过示例和可视化教授面向服务的编程
- 批准号:
1141200 - 财政年份:2012
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
相似国自然基金
星形胶质细胞糖代谢重编程介导Lactoferrin基因缺失引发的早期生长迟缓和认知障碍
- 批准号:32371037
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
三氧化二砷通过抑制骨髓巨噬细胞糖代谢重编程治疗再生障碍性贫血的机制研究
- 批准号:82370143
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Sirt1通过表观遗传重编程调控巨噬细胞“训练免疫”在血管性认知障碍中的作用机制研究
- 批准号:82371206
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
线粒体功能障碍介导TET酶活性下调在孕期砷暴露干扰子代肝脏β氧化基因羟甲基化重编程中的作用
- 批准号:82304186
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
海马神经元胆固醇代谢重编程致染色质组蛋白乙酰化水平降低介导老年小鼠术后认知功能障碍
- 批准号:82371192
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Increasing Low-income Children's Access to Healthy Structured Programming to Reduce Obesity
增加低收入儿童获得健康结构化规划的机会以减少肥胖
- 批准号:
10654378 - 财政年份:2023
- 资助金额:
$ 74.99万 - 项目类别:
ICU-CARE: An interactive mobile app to enhance the efficiency of daily informal caregiving in the intensive care unit
ICU-CARE:一款交互式移动应用程序,可提高重症监护病房日常非正式护理的效率
- 批准号:
10602917 - 财政年份:2023
- 资助金额:
$ 74.99万 - 项目类别:
Sex Differences in Participation in Structured Exercise Programming from the Acute Stroke Event to 6 months Later: Access, Motivators, Barriers and Facilitators
从急性中风事件到 6 个月后参与结构化运动计划的性别差异:途径、激励因素、障碍和促进因素
- 批准号:
449465 - 财政年份:2020
- 资助金额:
$ 74.99万 - 项目类别:
Studentship Programs
A Chatbot Utilizing Machine Learning and Natural Language Processing to Implement the Brief Negotiation Interview to Improve Engagement in Buprenorphine Treatment among Justice-Involved Individuals
聊天机器人利用机器学习和自然语言处理来实施简短的谈判访谈,以提高参与正义的个人对丁丙诺啡治疗的参与度
- 批准号:
10157712 - 财政年份:2020
- 资助金额:
$ 74.99万 - 项目类别:
How can we better deliver tailored exercise programming for cancer survivors with multiple myeloma?
我们如何更好地为患有多发性骨髓瘤的癌症幸存者提供量身定制的锻炼计划?
- 批准号:
429181 - 财政年份:2019
- 资助金额:
$ 74.99万 - 项目类别:
Studentship Programs