ERI: Friction Stir Processing for Durability of Cobalt-Chromium-Molybdenum Biomaterials
ERI:搅拌摩擦加工提高钴铬钼生物材料的耐久性
基本信息
- 批准号:2301491
- 负责人:
- 金额:$ 19.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Engineering Research Initiation (ERI) grant supports research generating new knowledge of advanced manufacturing techniques for biomedical applications, with significant economic and technological benefits, as well as improved patient outcomes. Cobalt-chromium-molybdenum alloys are used as the bearing surfaces of prosthetic joint replacements because of their hardness, toughness, and biocompatibility. However, wear and corrosion of prosthetic implant materials in the human body remain serious problems for many patients. Friction stir processing is an advanced manufacturing technique that uses friction from a rotating tool to alter the metal surface, resulting in mechanical and corrosion properties that are highly desirable for bearing surfaces. Improved knowledge of the friction stir processing advanced manufacturing technique benefits the U.S. economy and medical device manufacturing industry. It also benefits millions of patients who undergo total joint replacement surgeries each year. Extending the durability of a prosthetic joint implant has an enormous impact on the quality of life of these patients and could be the difference between an implant that lasts a lifetime and complicated revision surgeries to replace failed implants. This research is multidisciplinary and provides education and outreach opportunities to encourage increased participation of underrepresented groups in engineering research.Friction stir processing can increase the wear and corrosion resistance of materials by controlling the microstructure through extreme deformation and precise control over the thermal history of the material. This research elucidates how the cobalt-chromium-molybdenum alloy microstructure such as grain size, carbide precipitation, and phase transformations can be controlled, and how they affect both wear and corrosion resistance. Extreme deformation causes dynamic recrystallization and martensitic phase transformations, resulting in fine grains with high hardness and wear resistance. Mechanical stirring and controlled temperature cause micron-sized, uniformly distributed carbides that strengthen passive oxide surface layers to bolster corrosion resistance. The research team performs friction stir processing experiments on the cobalt-based biomaterials with a polycrystalline cubic boron nitride/tungsten-rhenium alloy tool, and determines optimum processing conditions such as rotation speed, traverse speed, and applied load. Pin-on-disk wear tests and potentiodynamic polarization/electrochemical impedance spectroscopy corrosion tests quantify the wear and corrosion resistance of the different processed surfaces using different loads, sliding speeds, and biological lubricants selected to mimic an in-vivo prosthetic hip implant. Numerical simulations capture the gained knowledge of the basic science and physical mechanisms in play during friction stir processing of cobalt-based biomaterials and enable processing plans for medical devices made from this important biomedical alloy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项工程研究启动 (ERI) 拨款支持为生物医学应用产生先进制造技术新知识的研究,具有显着的经济和技术效益,并改善患者的治疗效果。钴铬钼合金因其硬度、韧性和生物相容性而被用作假体关节置换物的支撑表面。然而,人体假体植入材料的磨损和腐蚀仍然是许多患者面临的严重问题。搅拌摩擦加工是一种先进的制造技术,利用旋转工具的摩擦来改变金属表面,从而产生轴承表面非常理想的机械和腐蚀特性。提高搅拌摩擦加工先进制造技术的知识有利于美国经济和医疗器械制造业。它还使每年数百万接受全关节置换手术的患者受益。延长假体关节植入物的耐用性对这些患者的生活质量具有巨大影响,并且可能是持续终生的植入物与替换失效植入物的复杂翻修手术之间的区别。这项研究是多学科的,并提供教育和推广机会,以鼓励代表性不足的群体更多地参与工程研究。搅拌摩擦加工可以通过极端变形和精确控制材料的热历史来控制微观结构,从而提高材料的耐磨性和耐腐蚀性。这项研究阐明了如何控制钴铬钼合金的微观结构,如晶粒尺寸、碳化物沉淀和相变,以及它们如何影响耐磨性和耐腐蚀性。极端变形引起动态再结晶和马氏体相变,产生具有高硬度和耐磨性的细晶粒。机械搅拌和控制温度会产生微米级、均匀分布的碳化物,从而强化钝化氧化物表面层,从而增强耐腐蚀性。研究团队利用多晶立方氮化硼/钨铼合金工具对钴基生物材料进行搅拌摩擦加工实验,并确定了最佳加工条件,如转速、移动速度和施加载荷。销盘磨损测试和动电位极化/电化学阻抗谱腐蚀测试使用不同的负载、滑动速度和模拟体内假体髋关节植入物的生物润滑剂来量化不同加工表面的耐磨性和耐腐蚀性。数值模拟捕捉了钴基生物材料搅拌摩擦加工过程中发挥的基础科学和物理机制的知识,并为由这种重要的生物医学合金制成的医疗器械制定了加工计划。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Quentin Allen其他文献
Microstructural evaluation of hydrogen embrittlement and successive recovery in advanced high strength steel
先进高强度钢氢脆和连续回复的显微组织评价
- DOI:
10.1016/j.jmatprotec.2018.09.039 - 发表时间:
2019-03-01 - 期刊:
- 影响因子:6.3
- 作者:
Quentin Allen;T. Nelson - 通讯作者:
T. Nelson
Surface Texturing of Prosthetic Hip Implant Bearing Surfaces: A Review.
假体髋关节植入物支撑表面的表面纹理:综述。
- DOI:
10.1115/1.4048409 - 发表时间:
2020-10-05 - 期刊:
- 影响因子:0
- 作者:
Quentin Allen;B. Raeymaekers - 通讯作者:
B. Raeymaekers
Soft EHL Simulations of Lubricant Film Thickness in Textured Hard-on-Soft Bearings Considering Different Cavitation Models, in the Context of Prosthetic Hip Implants
在假髋植入物的背景下,考虑不同的空化模型,对硬质软质纹理轴承中的润滑油膜厚度进行软 EHL 模拟
- DOI:
10.1007/s11249-021-01498-8 - 发表时间:
2021-08-22 - 期刊:
- 影响因子:3.2
- 作者:
Quentin Allen;B. Raeymaekers - 通讯作者:
B. Raeymaekers
Maximizing the Lubricant Film Thickness Between a Rigid Microtextured and a Smooth Deformable Surface in Relative Motion, Using a Soft Elasto-Hydrodynamic Lubrication Model.
使用软弹性流体动力润滑模型,最大化相对运动中刚性微纹理和光滑可变形表面之间的润滑油膜厚度。
- DOI:
10.1115/1.4046291 - 发表时间:
2020-07-01 - 期刊:
- 影响因子:0
- 作者:
Quentin Allen;B. Raeymaekers - 通讯作者:
B. Raeymaekers
Convergence of (Soft) Elastohydrodynamic Lubrication Simulations of Textured Slider Bearings
纹理滑动轴承的(软)弹流动力润滑模拟的收敛
- DOI:
10.3390/lubricants11030092 - 发表时间:
2023-02-21 - 期刊:
- 影响因子:3.5
- 作者:
Quentin Allen;B. Raeymaekers - 通讯作者:
B. Raeymaekers
Quentin Allen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
高强铝合金搅拌摩擦焊接头全周期疲劳行为及寿命预测
- 批准号:52375376
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
搅拌摩擦加工制备细晶相变诱发塑性高熵合金微观组织演化机理及变形行为研究
- 批准号:52374400
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
搅拌摩擦加工制备超细晶锌锂合金及其组织性能调控机理
- 批准号:52305385
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
铝基复合材料搅拌摩擦增材制造及形变驱动均质沉积机理研究
- 批准号:52305345
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
铝合金/FRTP搅拌摩擦连接界面机械-化学协同强化效应及结合机理
- 批准号:52375316
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Optimization of friction stir welding process for joining of aluminum to steel
铝钢连接搅拌摩擦焊工艺优化
- 批准号:
RGPIN-2017-05127 - 财政年份:2022
- 资助金额:
$ 19.97万 - 项目类别:
Discovery Grants Program - Individual
Autonomous-controlled fabrication of hybrid cold spray-friction stir processed next-generation high-entropy alloy surfaces and structural repair
混合冷喷涂搅拌摩擦加工下一代高熵合金表面的自主控制制造和结构修复
- 批准号:
571021-2021 - 财政年份:2022
- 资助金额:
$ 19.97万 - 项目类别:
Alliance Grants
Autonomous-controlled fabrication of hybrid cold spray-friction stir processed next-generation high-entropy alloy surfaces and structural repair
混合冷喷涂搅拌摩擦加工下一代高熵合金表面的自主控制制造和结构修复
- 批准号:
571021-2021 - 财政年份:2022
- 资助金额:
$ 19.97万 - 项目类别:
Alliance Grants
Friction stir welding of metal and ceramics for fabrication of integrated structural member
用于制造集成结构件的金属和陶瓷的搅拌摩擦焊
- 批准号:
22K04726 - 财政年份:2022
- 资助金额:
$ 19.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimization of friction stir welding process for joining of aluminum to steel
铝钢连接搅拌摩擦焊工艺优化
- 批准号:
RGPIN-2017-05127 - 财政年份:2022
- 资助金额:
$ 19.97万 - 项目类别:
Discovery Grants Program - Individual