CIF: Small: Deep Stochasticity for Private Collaborative Deep Learning

CIF:小:私人协作深度学习的深度随机性

基本信息

  • 批准号:
    2215088
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

By now, Deep Learning is achieving unprecedented performance levels in many applications ranging from computer vision to natural language processing to drug design. Training models usually require large volumes of training data, said data being collected from multiple individuals/organizations to ensure heterogeneity since homogeneous data may lead to over-fitting. Training data often contain sensitive information, e.g., healthcare records, browsing history, or financial transactions, thereby posing privacy threats for the individuals from whom the data were collected. Although multi-machine collaborative learning, such as decentralized learning and federated learning, allegedly solves privacy concerns by never letting the raw training data leave the participating machines, recent studies have revealed a completely different picture: Not only can features of the training data be inferred from shared gradient/model updates, but even the raw data can be reversely inferred from these shared gradients. Moreover, adding noise to shared gradients, a de facto standard for achieving differential privacy, becomes effective only when the noise is sufficiently large, possibly leading to a degradation of the training accuracy. This project, instead, seeks to enable privacy protection for participating machines through judicious randomization that exploits the structure of collaborative learning algorithms and leverages their natural resiliency to error. The project will enrich the current curriculum by providing new modules on privacy-preserving decentralized learning for both undergraduate and graduate classes. Broadening Participation in Computing will be addressed through outreach activities involving minority students via Clemson PEER (Programs for Educational Enrichment and Retention) and WISE (Women in Science and Engineering). The project explores several different approaches to judiciously embed stochasticity at the algorithmic level, so-called deep stochasticity, in order to enable privacy protection in the collaborative learning process. The proposed approach exploits the natural resiliency of deep learning algorithms to parameter errors/noises, and enables privacy without compromising accuracy or incurring heavy computation/communication overheads with the flexibility to accommodate additional mechanisms like cryptography. The techniques are applicable to both parameter-server-free decentralized learning and to parameter-server facilitated federated learning. The main research thrusts center on the design of collaborative learning algorithms that use stochastic quantization schemes for inter-machine communications and random learning stepsizes in building the iterates. Rigorous analysis frameworks will be developed to quantitatively evaluate the strength of the privacy protection being achieved, and the theoretical results will be systematically validated through experiments with robot networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
到目前为止,深度学习在从计算机视觉到自然语言处理再到药物设计的许多应用中都达到了前所未有的性能水平。训练模型通常需要大量的训练数据,这些数据是从多个个人/组织收集的,以确保异质性,因为同质数据可能会导致过度拟合。训练数据通常包含敏感信息,例如医疗记录、浏览历史或金融交易,从而对收集数据的个人构成隐私威胁。尽管多机器协作学习,例如去中心化学习和联邦学习,据称通过不让原始训练数据离开参与机器来解决隐私问题,但最近的研究揭示了完全不同的情况:不仅可以推断训练数据的特征来自共享梯度/模型更新,但即使是原始数据也可以从这些共享梯度反向推断。此外,向共享梯度添加噪声是实现差分隐私的事实上的标准,只有当噪声足够大时才有效,可能会导致训练精度下降。相反,该项目寻求通过明智的随机化来实现参与机器的隐私保护,该随机化利用协作学习算法的结构并利用其对错误的自然弹性。该项目将为本科生和研究生课程提供有关保护隐私的去中心化学习的新模块,从而丰富当前的课程。扩大对计算机的参与将通过克莱姆森 PEER(教育丰富和保留计划)和 WISE(科学与工程领域的女性)涉及少数族裔学生的外展活动来解决。该项目探索了几种不同的方法,在算法层面明智地嵌入随机性,即所谓的深度随机性,以便在协作学习过程中实现隐私保护。所提出的方法利用深度学习算法对参数错误/噪声的自然弹性,并在不影响准确性或招致大量计算/通信开销的情况下实现隐私,并且可以灵活地适应密码学等附加机制。这些技术既适用于无参数服务器的分散学习,也适用于参数服务器促进的联邦学习。主要研究重点是协作学习算法的设计,该算法使用随机量化方案进行机器间通信,并在构建迭代时使用随机学习步长。将开发严格的分析框架来定量评估所实现的隐私保护的强度,并通过机器人网络实验系统地验证理论结果。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ensuring both Almost Sure Convergence and Differential Privacy in Nash Equilibrium Seeking on Directed Graphs
确保有向图纳什均衡搜索中的几乎确定收敛和差分隐私
Tailoring Gradient Methods for Differentially-Private Distributed Optimization
用于差分隐私分布式优化的定制梯度方法
Differentially-private Distributed Algorithms for Aggregative Games with Guaranteed Convergence
保证收敛的聚合博弈的差分私有分布式算法
Differentially-Private Distributed Optimization with Guaranteed Optimality
保证最优性的差分私有分布式优化
  • DOI:
    10.1109/cdc49753.2023.10383285
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Yongqiang;Nedić, Angelia
  • 通讯作者:
    Nedić, Angelia
Quantization Avoids Saddle Points in Distributed Optimization
量化避免分布式优化中的鞍点
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongqiang Wang其他文献

Synthetic Fault Diagnosis Method of Power Transformer Based on Rough Set Theory and Bayesian Network
基于粗糙集理论和贝叶斯网络的电力变压器综合故障诊断方法
  • DOI:
    10.1007/978-3-540-87734-9_57
  • 发表时间:
    2008-09-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongqiang Wang;F. Lu;Heming Li
  • 通讯作者:
    Heming Li
Research on the operation of cascade reservoirs combined navigation part I: Concept and framework of distributed transport system coupled land and water
梯级水库联航调度研究第一部分:水陆耦合分布式交通系统概念与框架
  • DOI:
    10.1360/n092015-00057
  • 发表时间:
    2015-10-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Zhong;Yongqiang Wang;Baosheng Wu;Kejing Liu;Guangqian Wang
  • 通讯作者:
    Guangqian Wang
Study on cutting force calculation and optimization strategy of machining spiral bevel gear by using forming method
成形法加工弧齿锥齿轮切削力计算及优化策略研究
Improving crop model accuracy in the development of regional irrigation and nitrogen schedules by using data assimilation and spatial clustering algorithms
通过使用数据同化和空间聚类算法提高区域灌溉和施氮计划制定中作物模型的准确性
  • DOI:
    10.1016/j.agwat.2023.108645
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Yongqiang Wang;Kexin Sun;Yunhe Gao;Ruizhe Liu;Hongzheng Shen;Xuguang Xing;Xiaoyi Ma
  • 通讯作者:
    Xiaoyi Ma
A FR4‐based compact VCO with wide tuning range using SISL transformed triple‐tanks
基于 FR4 的紧凑型 VCO,具有宽调谐范围,使用 SISL 改造的三重坦克
  • DOI:
    10.1049/ell2.12251
  • 发表时间:
    2021-06-22
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Hai;Kaige Ma;Kaixue Ma;Yongqiang Wang
  • 通讯作者:
    Yongqiang Wang

Yongqiang Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongqiang Wang', 18)}}的其他基金

CIF: Small: Ensuring Accuracy in Differentially Private Decentralized Optimization
CIF:小:确保差分隐私去中心化优化的准确性
  • 批准号:
    2334449
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
FRR: Collaborative Research: Collaborative Learning for Multi-robot Systems with Model-enabled Privacy Protection and Safety Supervision
FRR:协作研究:具有模型支持的隐私保护和安全监督的多机器人系统协作学习
  • 批准号:
    2219487
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Harnessing Intrinsic Dynamics for Inherently Privacy-preserving Decentralized Optimization
合作研究:CIF:中:利用内在动力学实现固有隐私保护的去中心化优化
  • 批准号:
    2106293
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Encrypted control for privacy-preserving and secure cyber-physical systems
隐私保护和安全网络物理系统的加密控制
  • 批准号:
    1912702
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
EAGER: Control Theory for Real-time Privacy-preserving Consensus Control of Engineering Networks
EAGER:工程网络实时隐私保护共识控制的控制理论
  • 批准号:
    1824014
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CICI: RSARC: Secure Time for Cyberinfrastructure Security
CICI:RSARC:网络基础设施安全的安全时间
  • 批准号:
    1738902
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
STTR Phase I: Eco-Friendly Mass Production of Highly Conductive Graphene Sheets with Controlled Structures
STTR第一阶段:结构可控的高导电石墨烯片的环保大规模生产
  • 批准号:
    1346496
  • 财政年份:
    2014
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
STTR Phase I: Surface- and Structural Engineering of Colloidal Quantum Dots Towards Efficient and
STTR 第一阶段:胶体量子点的表面和结构工程,以实现高效和
  • 批准号:
    1010491
  • 财政年份:
    2010
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
STTR Phase I: Magnetic Nanoparticle Microfluidics for High Efficient Capture, Separation and Concetration of Foodborne Pathogens
STTR 第一阶段:用于高效捕获、分离和浓缩食源性病原体的磁性纳米颗粒微流体
  • 批准号:
    0810626
  • 财政年份:
    2008
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
SBIR Phase II: Development of Cadmium-Free, Water-Soluble and Multicolor Quantum Dots by Chemical Doping
SBIR 第二阶段:通过化学掺杂开发无镉、水溶性和多色量子点
  • 批准号:
    0823040
  • 财政年份:
    2008
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

仿深共晶溶剂小分子类低温粘合剂的设计制备及粘附机制研究
  • 批准号:
    22308299
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
活体自组装超小下转换纳米颗粒用于肿瘤深组织的近红外二区成像
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
M2型小胶质细胞源外泌体在深低温低流量术后脑损伤中的作用及机制研究
  • 批准号:
    82000303
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
仅用光学序列图像的深空小天体探测全程自主相对导航方法及实验技术
  • 批准号:
    U20B2055
  • 批准年份:
    2020
  • 资助金额:
    258 万元
  • 项目类别:
    联合基金项目
丙泊酚深麻醉保护术后认知功能的小胶质细胞机制
  • 批准号:
    81671076
  • 批准年份:
    2016
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目

相似海外基金

CIF: Small: MoDL: Interpreting Deep-Learned Error-Correcting Codes
CIF:小型:MoDL:解释深度学习纠错码
  • 批准号:
    2240532
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CIF: Small: Interpretable Machine Learning based on Deep Neural Networks: A Source Coding Perspective
CIF:小:基于深度神经网络的可解释机器学习:源编码视角
  • 批准号:
    2205004
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CIF: Small: Interpretable Machine Learning based on Deep Neural Networks: A Source Coding Perspective
CIF:小:基于深度神经网络的可解释机器学习:源编码视角
  • 批准号:
    2205004
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Deep Sparse Models: Analysis and Algorithms
合作研究:CIF:小型:深度稀疏模型:分析和算法
  • 批准号:
    2240708
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Deep Sparse Models: Analysis and Algorithms
合作研究:CIF:小型:深度稀疏模型:分析和算法
  • 批准号:
    2008460
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了