Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
基本信息
- 批准号:2333949
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The escalating threat of cybercrime has underscored the urgent need for skilled professionals proficient in collecting and presenting evidence for legal proceedings and business decision-making. However, the vast volume of digital data stored across devices, networks, and social media platforms makes it challenging to locate and analyze specific pieces of evidence. The task of connecting evidence and identifying patterns presents a daunting challenge for human investigators. The novelty of this project lies in harnessing the extraordinary capabilities of Large Language Models (LLMs) to create tailored educational materials for digital forensics professionals and students. These materials are designed to equip investigators with the knowledge and skills necessary to navigate the intricate landscape of cybercrimes and enhance their effectiveness in combating such offenses. The project's broader significance is to better prepare investigators to leverage LLM-assisted techniques for digital forensics, ensuring they can adapt to the evolving nature of cyber threats effectively. The project will fine-tune an LLM to construct Digital Forensic Investigation Graphs (DFIGs) based on criminal cases from a widely recognized repository. These DFIGs serve as visually informative representations of the investigation process, evidence entities, and their interconnections using STIX, a standardized language for exchanging structured threat intelligence data. To ensure accuracy, the entities and relationships within the graphs will undergo scrutiny through graph neural network (GNN) models, identifying and rectifying potential errors. Supported by comprehensive instructional materials, including lecture notes, case studies, and hands-on lab exercises, students will be guided through the process of acquiring the necessary expertise to construct and analyze DFIGs for diverse digital forensic cases. This will promote digital forensics education at the University of Baltimore, a Minority-Serving Institution, and Florida A&M University, an HBCU, among others. Additionally, a faculty development workshop will disseminate the instructional materials to the broader national community, fostering a stronger and more inclusive network of cybercrime fighters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络犯罪的威胁不断升级,突显了迫切需要熟练的专业人员,熟练地收集和提供证据以进行法律程序和商业决策。但是,跨设备,网络和社交媒体平台存储的大量数字数据使找到和分析特定证据的挑战。连接证据和识别模式的任务给人类研究人员带来了艰巨的挑战。该项目的新颖性在于利用大语言模型(LLMS)的非凡能力来为数字取证专业人士和学生创建量身定制的教育材料。这些材料旨在为调查人员提供所需的知识和技能,以浏览网络犯罪的复杂景观并提高其在抗击此类罪行方面的有效性。该项目更广泛的意义是更好地准备研究人员为数字取证提供LLM辅助技术,以确保他们可以有效地适应网络威胁的不断发展的性质。该项目将根据广受认可的存储库中的刑事案件来微调LLM,以构建数字法医调查图(DFIG)。这些DFIG用作调查过程,证据实体及其互连的视觉信息表示,使用Stix(一种用于交换结构化威胁智能数据的标准化语言)。为了确保准确性,图中的实体和关系将通过图神经网络(GNN)模型进行审查,识别和纠正潜在的误差。在包括讲义,案例研究和动手实验室练习在内的全面教学材料的支持下,学生将通过获取必要的专业知识来构建和分析DFIG,以构建和分析多样化的数字法医案例。这将促进巴尔的摩大学的数字取证教育,少数派服务机构和HBCU等佛罗里达州A&M大学等。此外,教师发展研讨会将向更广泛的民族社区传播教学材料,促进了更强大,更具包容性的网络犯罪战斗机网络。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weifeng Xu其他文献
Study on kinetics of reactive extraction of propranolol enantiomers by multiple linear regression method
多元线性回归法反应萃取普萘洛尔对映体的动力学研究
- DOI:
10.1002/apj.2097 - 发表时间:
2017-05 - 期刊:
- 影响因子:1.8
- 作者:
Panliang Zhang;Qing Cheng;Kewen Tang;Yunren Qiu;Weifeng Xu;Pan Jiang;Guilin Dai - 通讯作者:
Guilin Dai
Modeling multiple chemical equilibrium in chiral extraction of metoprolol enantiomers from single-stage extraction to fractional extraction
模拟美托洛尔对映体手性萃取中从单级萃取到分级萃取的多重化学平衡
- DOI:
10.1016/j.ces.2017.11.007 - 发表时间:
2018-02 - 期刊:
- 影响因子:4.7
- 作者:
Panliang Zhang;Shichuan Wang;Kewen Tang;Weifeng Xu;Fan He;Yunren Qiu - 通讯作者:
Yunren Qiu
Joint Optimization of Forward Contract and Operating Rules for Cascade Hydropower Reservoirs
梯级水库远期合同与运行规则联合优化
- DOI:
10.1061/(asce)wr.1943-5452.0001510 - 发表时间:
2022-02 - 期刊:
- 影响因子:3.1
- 作者:
Xiao Li;Pan Liu;Bo Ming;Kangdi Huang;Weifeng Xu;Yan Wen - 通讯作者:
Yan Wen
Continuous Separation for Propranolol by Fractional Extraction: Symmetric Separation and Asymmetric Separation
通过分级萃取连续分离普萘洛尔:对称分离和不对称分离
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.4
- 作者:
Panliang Zhang;Weifeng Xu;Kewen Tang - 通讯作者:
Kewen Tang
Mining Auto-generated Test Inputs for Test Oracle
挖掘测试预言机自动生成的测试输入
- DOI:
10.1109/itng.2013.126 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Weifeng Xu;Hanlin Wang;Tao Ding - 通讯作者:
Tao Ding
Weifeng Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weifeng Xu', 18)}}的其他基金
EAGER: SaTC-EDU: Exploring Visualized and Explainable Artificial Intelligence to Improve Students’ Learning Experience in Digital Forensics Education
EAGER:SaTC-EDU:探索可视化和可解释的人工智能,以改善学生在数字取证教育中的学习体验
- 批准号:
2039289 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
教育人工智能背景下课程智慧大脑构建研究
- 批准号:62367003
- 批准年份:2023
- 资助金额:29 万元
- 项目类别:地区科学基金项目
教育大数据背景下的个性化教育资源精准分发方法研究
- 批准号:62307008
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
中国家庭的生育教育联合决策研究:微观机制与宏观效应
- 批准号:72373118
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
面向在线教育的行为建模与个性化习题推荐方法研究
- 批准号:62307020
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向小样本教育场景的学生知识追踪方法研究
- 批准号:62307006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Implementation Grant: Active Societal Participation In Research and Education
合作研究:实施补助金:社会积极参与研究和教育
- 批准号:
2326774 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
- 批准号:
2334954 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414607 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414606 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant