EAGER: Low-Temperature Plasmas for Synthesis of Diamond Nanoparticles
EAGER:用于合成金刚石纳米粒子的低温等离子体
基本信息
- 批准号:2333452
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
While diamonds are prized as gemstones, few realize the immense technological potential that diamond offers for optoelectronic devices. Diamond is a wide-bandgap semiconductor with extraordinarily high thermal conductivity, making it a material of choice for a range of applications including quantum computing, implantable biomedical devices, and high-voltage electronics – applications beyond the traditional cutting bit uses of industrial diamonds. When diamond is made in nanoparticle form, its capabilities increase because of size-induced changes to properties and the ease of incorporating nanoparticles into thin film applications. The challenge is that synthesizing diamond nanoparticles with high quality and in a scalable manner is difficult, and there are many scientific knowledge gaps on how diamond nanoparticles are created. Carbon-carbon bonds can form either graphite or diamond, and control over which bond is generated in reactive processes remains an open problem. This research plan intends to expand on exciting early results indicating that diamond nanoparticles can be formed in low-temperature plasma (LTP) reactors, in an approach that promises new understanding of how diamond can be generated with high quality and high yield. The expected results of this research are the discovery of new reaction pathways to control diamond growth in flow-through LTPs with the capability to select bond formation during the reaction. If successful, this work will enable the creation of diamond nanoparticles for a variety of critical applications, as well as generate new knowledge around bond formation in LTPs for other semiconductor nanomaterials. The proposed research will also be used in conjunction with outreach events to encourage participation of underrepresented groups in engineering.Low-temperature plasma (LTP) synthesis of nanoparticles has gained growing attention for the ability of these reactors to produce high-quality and tunable-property nanoparticles in a scalable manner. The fundamental challenge in LTP synthesis of nanoparticles is a gap in knowledge about how reactor parameters directly influence nanoparticle growth. This challenge is amplified in the context of the carbon system, which features both sp2 and sp3 hybridization that result in dramatically different carbon-based materials – namely, graphene/graphite and diamond. In this work, based on promising preliminary results, selective bond hybridization in radiofrequency and microwave LTP reactors via control over plasma and reactor parameters will be investigated for synthesis of diamond nanoparticles. Focusing on synthesis of nanoparticles allows for added functional tunability because of size-dependent properties. LTP reactors are unique in that they offer control over a variety of nanocrystal properties, including size, surface functionality, and doping together with controlled deposition using inertial impaction, diffusion, or even direct-write deposition into patterns. This research will produce a map between reactor operating parameters and resulting nanoparticle properties, including discovering the conditions that are required for selected bond hybridization during the reaction. The proposed work will build a fundamental picture of how nanocrystal nucleation and growth occur, filling a critical gap in understanding about the exact energetic and growth condition requirements for diamond synthesis, as compared to graphite synthesis, in LTP reactors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然钻石作为宝石底漆,但很少有人意识到钻石为光电设备提供的巨大技术潜力。 Diamond是一种宽带半导体,具有非常高的导热率,使其成为一系列应用的首选材料,包括量子计算,可植入的生物医学设备和高压电子设备 - 超出了传统的工业钻石的剪切少量用途。当以纳米颗粒形式制造钻石时,由于大小引起的性质变化以及将纳米颗粒增加到薄膜应用中的易于性,其功能会增加。面临的挑战是,很难以高质量和可扩展的方式合成钻石纳米颗粒,并且在如何产生钻石纳米颗粒上存在许多科学知识差距。碳碳键可以形成石墨或钻石,控制在反应性过程中产生键的控制仍然是一个开放的问题。该研究计划旨在扩大令人兴奋的早期结果,表明可以在低温等离子体(LTP)反应堆中形成钻石纳米颗粒,这种方法有望有望对如何以高质量和高产量产生钻石的新了解。这项研究的预期结果是发现了控制流通LTP中钻石生长的新反应途径,并且能够在反应过程中选择键形成。成功的这项工作将使为各种关键应用创建钻石纳米颗粒,并为其他半导体纳米材料中的LTP中的键形成生成新的知识。拟议的研究还将与外联事件结合使用,以鼓励代表性不足的群体参与工程。低温血浆(LTP)的纳米颗粒合成已引起了这些反应堆在可伸缩的动力中产生高质量和可刺激性的纳米颗粒的能力的增长。 LTP合成纳米颗粒的基本挑战是关于反应器参数如何直接影响纳米颗粒生长的知识差距。在碳系统的背景下,这一挑战被放大,该碳系统具有SP2和SP3杂交,从而导致碳基材料截然不同,即石墨烯/石墨岩和钻石。在这项工作中,基于有希望的初步结果,将研究通过控制血浆和反应器参数的射频和微波LTP反应器的选择性键杂交,以合成钻石纳米颗粒的合成。专注于纳米颗粒的合成可以增加功能可命中性,这是由于尺寸依赖性特性。 LTP反应器的独特之处在于它们可以控制各种纳米晶体特性,包括尺寸,表面功能,并使用惯性撞击,扩散,甚至直接 - 连续沉积到模式中。这项研究将在反应堆工作参数和产生的纳米颗粒性质之间产生图,包括发现反应过程中选定键杂交所需的条件。拟议的工作将建立一个基本的图景,说明纳米晶体成核和生长如何发生,填补了与LTP反应堆相比,与石墨合成相比,了解钻石合成的确切能量和生长条件要求的关键差距。该奖项反映了NSF的法定任务,并通过评估范围来诚实地对其进行了评估,并通过评估范围进行了评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca Anthony其他文献
Effectiveness and cost-effectiveness of a universal parenting skills programme in deprived communities: multicentre randomised controlled trial
贫困社区通用育儿技能计划的有效性和成本效益:多中心随机对照试验
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2.9
- 作者:
D. Simkiss;H. Snooks;N. Stallard;P. Kimani;B. Sewell;D. Fitzsimmons;Rebecca Anthony;S. Winstanley;Lynsey Wilson;C. Phillips;S. Stewart - 通讯作者:
S. Stewart
Exploring online experiences, cyberbullying and wellbeing for young people looked after in Wales: An analysis of the school health research network 2017/18 survey
探索威尔士受照顾的年轻人的在线体验、网络欺凌和福祉:对 2017/18 年学校健康研究网络调查的分析
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Louisa M. Roberts;Sophie Wood;Cindy Corliss;Rebecca Anthony - 通讯作者:
Rebecca Anthony
Recognising the elephant in the room: Foundation doctors and anticipatory care planning
- DOI:
10.7861/fhj.2020-0200 - 发表时间:
2021-03-01 - 期刊:
- 影响因子:
- 作者:
Helen Chapman;Miriam Jassam;Rebecca O’Rourke;Rebecca Anthony - 通讯作者:
Rebecca Anthony
Rebecca Anthony的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rebecca Anthony', 18)}}的其他基金
CAREER: Continuous, Vapor-phase Manufacturing of Anisotropic Silicon Nanostructures for Optoelectronic Applications
职业:用于光电应用的各向异性硅纳米结构的连续气相制造
- 批准号:
1651674 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Innovative Tunable Optical Properties in Nanocrystal-based Films by Employing Mechanical Instabilities
利用机械不稳定性在纳米晶体薄膜中实现创新的可调谐光学特性
- 批准号:
1561964 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
“温度响应-印迹驱动”聚低共熔溶剂纸芯片对中药黄曲霉毒素的可视化检测研究
- 批准号:82304719
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EAST托卡马克低碰撞率等离子体中带状流与电子温度梯度模湍流相互作用的实验研究
- 批准号:12305254
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低应力场和温度场耦合诱导高Bs铁基纳米晶合金的微观结构演化与性能调控研究
- 批准号:52301204
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Ni-20Cr合金梯度纳米结构的低温构筑及其腐蚀行为研究
- 批准号:52301123
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
考虑温度效应的低路堤软基热-流-固耦合动力特性与长期运营沉降研究
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:
相似海外基金
EAGER: Low-temperature Coupling of Methane Surrogates over Single Atom Catalysts: Elucidation of Elementary Reactions for C-C Bond Formation
EAGER:单原子催化剂上甲烷替代物的低温偶联:阐明 C-C 键形成的基本反应
- 批准号:
2328552 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Investigating the possibility of low temperature (<700 C) melt in silicic igneous systems
EAGER:调查低温的可能性(
- 批准号:
1919714 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Enabling Quantum Leap: Electrically tunable, long-distance coherent coupling between room temperature qubits mediated by magnons in low-dimensional magnets
EAGER:实现量子飞跃:由低维磁体中的磁振子介导的室温量子位之间的电可调、长距离相干耦合
- 批准号:
1838513 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Investigating Super-Heated Urea for NOx Reduction for Low Temperature Combustion Engine Application
EAGER:研究过热尿素在低温内燃机应用中减少氮氧化物的效果
- 批准号:
1840883 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Interface Engineering for Low-Temperature Process and Stable Organometal Perovskite Solar Cells
EAGER:低温工艺和稳定有机金属钙钛矿太阳能电池的界面工程
- 批准号:
1748101 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant