I-Corps: 3D Bioprinted Cardiac Tissue Patch for Heart Repair
I-Corps:用于心脏修复的 3D 生物打印心脏组织补片
基本信息
- 批准号:2333048
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of an implantable 3D bioprinted patch device that can regenerate damaged cardiac muscle tissues. The proposed technology is for the restoration of necrotic myocardial tissues resulting from a severe form of heart attack known as ST-elevated Myocardial Infarction (STEMI). Current approaches to STEMI and heart failure treatment focus primarily on restoring blood flow to the cardiac muscle, but do little to regenerate the myocardium once damaged. During a STEMI event, decreased blood flow to cardiac muscle tissue (myocardium) leads to the death of heart muscle cells known as cardiomyocytes and permanent restructuring of the heart’s microstructure. As a function of the poor inherent regenerative capacity of the myocardium, an estimated 20% of patients who suffer an initial STEMI will go on to have a second within 5 years, and up to 30% of primary-STEMI patients will develop heart failure within 1 year. The proposed technology may be a first-in-class interventionary method for the regeneration of myocardial tissues and may improve the quality of life for STEMI patients by lowering their risk of subsequent heart attacks and progression to heart failure. Moreover, the technology may spur the development of other patch-based technologies for the treatment of other debilitating fibrotic diseases.This I-Corps project is based on the development of a 3D bioprinted tissue patch technology that promotes the regeneration of cardiac muscle tissue through the delivery of patient-specific cardiac cells. This proposed technology is aimed treating necrotic myocardial tissues resulting from a severe form of heart attack known as ST-elevated Myocardial Infarction (STEMI) and employs a tri-cultured, cellularized patch system to induce myocardial tissue regeneration developed using a murine chronic myocardial infarction (MI) model. Initial results using the proposed technology demonstrated that its structural design and cellular components promoted enhanced cellular engraftment, vascularization, and increased left ventricular ejection fraction of the chronic MI model 4 months post-implantation. Upon clinical testing and approval, the proposed technology may be implanted as an adjunct material onto the infarcted myocardium of individuals undergoing a standard coronary artery bypass graft procedure to promote myocardial tissue regeneration and the restoration of cardiac output. Additionally, as a function of the versatility of the proposed technology, the 3D printed patches also may be adapted for the regeneration of other fibrotic tissues of the body, as well as function as scaffold materials for the study of various diseases and testing of pharmaceuticals in both academic and commercial settings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该I-Corps项目的更广泛的影响/商业潜力是开发可植入的3D生物打印贴片装置,该装置可以再生受损的心肌受损。所提出的技术是为了恢复因严重的心脏病发作而被称为ST高出的心肌违规(STEMI)而导致的坏死心肌正时。当前对STEMI和心力衰竭治疗的方法主要集中在恢复流向心脏肌肉的血液流动,但一旦损坏就无法再生心肌。在STEMI事件中,流向心肌组织(心肌)的血液流量减少导致心脏肌肉细胞死亡,称为心肌细胞和心脏微观结构的永久性重组。随着心肌固有的再生能力较差的函数,估计有20%的初始STEMI患者将在5年内继续前进,并且高达30%的初级STEMI患者将在1年内发展心力衰竭。拟议的技术可能是心肌时机再生的第一类介入方法,可以通过降低其随后的心脏病发作的风险并发展为心力衰竭,从而改善STEMI患者的生活质量。此外,该技术可能会刺激其他基于斑块的技术来治疗其他令人衰弱的纤维化疾病。此I-Corps项目基于通过递送患者特异性心脏细胞的促进心肌组织的再生的3D生物打印组织贴片技术的开发。这项提出的技术的目的是治疗因严重的心脏病发作而导致的坏死性心肌时序,称为ST高出的心肌违规(STEMI)和员工使用三培养的,细胞化的贴剂系统,用于诱导使用鼠类慢性心肌intraction(MI)模型开发的心肌组织再生。使用该技术的最初结果表明,其结构设计和细胞成分促进了慢性MI模型在植入后4个月的慢性MI模型的增强的细胞植入,血管形成以及增加的左心室射血分数。经临床测试和批准后,提出的技术可以作为辅助材料植入梗塞的辅助材料,以梗塞的心肌,正在接受标准的冠状动脉搭桥移植手术,以促进心肌组织再生和心脏输出的恢复。此外,作为提出技术多功能性的函数,3D打印的贴片也可以适用于身体的其他纤维化组织的再生,以及作为脚手架材料的功能,用于研究各种疾病的研究和在学术环境中对药物进行测试的研究,以反映了NSF的范围,并反映了NSF的构建范围。影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lijie Grace Zhang其他文献
Testing of a 3D printed, nanostructured osteochondral implant for knee repair in a small animal model
在小动物模型中测试用于膝关节修复的 3D 打印纳米结构骨软骨植入物
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
N. Arumugasaamy;J. Fisher;N. Gandhi;B. Holmes;Kuo C;M. Oetgen;Cristina Rossi;Lijie Grace Zhang - 通讯作者:
Lijie Grace Zhang
Lipid-Coated Microbubbles: Enhanced Osteogenic Differentiation of Human Mesenchymal Stem Cells Using Microbubbles and Low Intensity Pulsed Ultrasound on 3D Printed Scaffolds (Adv. Biosys. 2/2019)
脂质涂层微泡:在 3D 打印支架上使用微泡和低强度脉冲超声增强人类间充质干细胞的成骨分化(Adv. Biosys. 2/2019)
- DOI:
10.1002/adbi.201970021 - 发表时间:
2019 - 期刊:
- 影响因子:4.1
- 作者:
Jenna Osborn;Mitra Aliabouzar;Xuan Zhou;Raj Rao;Lijie Grace Zhang;Kausik Sarkar - 通讯作者:
Kausik Sarkar
Greater osteoblast and mesenchymal stem cell adhesion and proliferation on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes.
通过水热处理的纳米晶羟基磷灰石/磁性处理的碳纳米管,在钛上增强成骨细胞和间充质干细胞的粘附和增殖。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Mian Wang;Nathan J. Castro;Jian Li;M. Keidar;Lijie Grace Zhang - 通讯作者:
Lijie Grace Zhang
Design a Biologically Inspired Nanostructured Coating for Better Osseointegration
设计受生物启发的纳米结构涂层以实现更好的骨整合
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Mian Wang;Jian Li;M. Keidar;Lijie Grace Zhang - 通讯作者:
Lijie Grace Zhang
Development of a Biomimetic Electrospun Microfibrous Scaffold With Multiwall Carbon Nanotubes for Cartilage Regeneration
开发用于软骨再生的仿生静电纺丝微纤维支架与多壁碳纳米管
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
B. Holmes;Nathan J. Castro;Jian Li;Lijie Grace Zhang - 通讯作者:
Lijie Grace Zhang
Lijie Grace Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lijie Grace Zhang', 18)}}的其他基金
Understanding Multi-stage Neural Stem Cell Function via 4D Bioprinting Reprogrammable System
通过 4D 生物打印可重编程系统了解多阶段神经干细胞功能
- 批准号:
2110842 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: 4D Bioprinting of Near-infrared Light Responsive Smart Constructs for Pluripotent Stem Cell Derived Cardiomyocyte Engineering
合作研究:用于多能干细胞衍生心肌细胞工程的近红外光响应智能结构的 4D 生物打印
- 批准号:
1856321 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER: 4D Bioprinting of Smart Complex Tissue Constructs
EAGER:智能复杂组织结构的 4D 生物打印
- 批准号:
1642186 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
UNS: Integrating 3D Bioprinting and Biologically Inspired Nanomaterials for Cartilage Regeneration
UNS:整合 3D 生物打印和生物启发纳米材料用于软骨再生
- 批准号:
1510561 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
A Novel 3D Bioprinted Smart Vascularized Nano Tissue
新型 3D 生物打印智能血管化纳米组织
- 批准号:
8755143 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
相似国自然基金
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
生物3D打印构建微环境力学仿生支架通过Hippo-YAP/TAZ通路促关节修复及机制研究
- 批准号:82372377
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向极软生物材料的动态支持浴数字光处理生物3D打印研究
- 批准号:52305325
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生物3D打印组织工程骨通过PI3K-AKT信号通路诱导MSCs成骨分化促进骨缺损修复的效应及机制研究
- 批准号:82302700
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
- 批准号:
10749330 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
3D bioprinted hydrogel models for the study and treatment of human liver disease
用于研究和治疗人类肝脏疾病的 3D 生物打印水凝胶模型
- 批准号:
2879464 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Studentship
Collaborative Research: EAGER: 3D Bioprinted Organoids for Studying the Mechanism of Cerebrovascular Aging
合作研究:EAGER:用于研究脑血管衰老机制的 3D 生物打印类器官
- 批准号:
2317758 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Production of 3D Bioprinted Autologous Vaginal Tissue Constructs for Reconstructive Applications
生产用于重建应用的 3D 生物打印自体阴道组织结构
- 批准号:
10672642 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别: