Understanding Molecular And Photo-Assisted Doping of Organic Electronic Materials

了解有机电子材料的分子和光辅助掺杂

基本信息

  • 批准号:
    2330929
  • 负责人:
  • 金额:
    $ 39.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Low-cost and reliable solar energy generation is crucial for mitigating the ongoing effects of climate change and establishing a sustainable energy future. Metal-halide perovskite solar cells have emerged as disruptive contenders in the solar market due to their low-temperature processability, abundant material composition, and solution processability. However, their short device lifespan remains a major obstacle to their economic competitiveness. The charge transport layers that interface with the perovskite active layer play a critical role in both the efficiency and lifespan of these solar cells. Extensive research on charge transport layers has led to significant improvements in efficiency and lifespan, with spiro-OMeTAD being the most extensively studied due to its excellent electrical properties. However, current doping methods for spiro-OMeTAD result in detrimental byproduct formation, impeding the scalability and lifespan of perovskite solar cells. This research aims to overcome these challenges by developing a novel doping process that effectively inhibits or eliminates the formation of these byproducts. The outcomes of this study have the potential to impact various fields relying on organic semiconductors, including field-effect transistors, photovoltaics, light-emitting diodes, and organic photo-detectors. It is expected to contribute significantly to improving the performance, scalability, and stability of organic semiconductor-based devices by enhancing doping efficiency, suppressing byproduct formation, achieving uniform doping, and enabling reliable and scalable processing. Furthermore, the funding from this project will support a laboratory experience for grade 10 and 11 high school students from underrepresented communities through the Applied Research Innovations in Science and Engineering (ARISE) program at New York University, providing valuable opportunities for research on perovskite solar cells.Our group has developed a new doping method utilizing a process gas and ultraviolet light to oxidize Spiro-OMeTAD solutions containing LiTFSI. This method improves film conductivity, durability, and reduces byproduct concentration. It has demonstrated efficacy in increasing conductivity of various organic polymer species, despite significant energy level barriers. However, the design criteria for dopant composition and energetics in fully solution-processed doping schemes are unclear. This project aims to understand the underlying mechanism of molecular and photo-assisted doping of organic electronics. Integrating engineering, chemistry, and physics, it offers a novel approach to tuning the properties of organic-based electronic materials, enhancing conductivity, uniformity, and stability. Our first aim explores the effects of cationic substitution of metal-TFSI salts on reaction pathways, byproduct concentration, and optoelectronic properties of cast films. The second aim probes the impacts of light intensity, wavelength, gas species, and solvent properties on doping efficiency in conjugated polymer systems with favorable and unfavorable energy level alignments. By investigating these mechanisms and their role in optoelectronic properties, we seek to improve doping efficiency, retention, uniformity, and expand the range of available dopant species in organic semiconducting films. These advancements will significantly contribute to perovskite solar cell technology, facilitating the transition from fossil fuels to clean energy and enabling cost-effective, scalable manufacturing techniques to meet increasing demand.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
低成本和可靠的太阳能产生对于减轻气候变化的持续影响并建立可持续能源的未来至关重要。金属 - 卤化物钙钛矿太阳能电池由于其低温加工性,丰富的材料组成和溶液加工性而成为太阳能市场中的破坏性竞争者。但是,他们短暂的设备寿命仍然是其经济竞争力的主要障碍。与钙钛矿活性层接口的电荷传输层在这些太阳能电池的效率和寿命中都起着至关重要的作用。对电荷传输层的广泛研究导致了效率和寿命的显着提高,由于其出色的电气性能,螺旋形的研究最广泛。然而,当前用于螺旋形的掺杂方法会导致有害的副产品形成,从而阻碍了钙钛矿太阳能电池的可伸缩性和寿命。这项研究旨在通过开发一种新颖的掺杂过程来克服这些挑战,该过程有效地抑制或消除了这些副产品的形成。这项研究的结果有可能影响依赖有机半导体的各种领域,包括现场效应晶体管,光伏,发光二极管和有机光探测器。预计,通过提高掺杂效率,抑制副产品形成,实现统一的掺杂并实现可靠且可扩展的处理,可以通过提高掺杂效率,抑制掺杂效率,抑制掺杂效率,抑制掺杂效率,促进基于有机半导体的设备的性能,可扩展性和稳定性产生重大贡献。此外,该项目的资金将通过纽约大学的科学和工程学研究创新(ARISE)计划的10年级和11年级的高中学生的实验室经验,为Perovskite Solar Solar Cells的研究提供宝贵的机会。该方法可提高膜电导率,耐用性和降低副产品浓度。尽管能量水平较大,但它表明了各种有机聚合物物种的电导率提高的功效。但是,在完全溶液处理的掺杂方案中的掺杂剂组成和能量学的设计标准尚不清楚。该项目旨在了解有机电子的分子和光辅助掺杂的潜在机制。整合工程,化学和物理学,它提供了一种新颖的方法来调整基于有机的电子材料的特性,增强电导率,均匀性和稳定性。我们的第一个目的探讨了金属-TFSI盐对铸造膜的反应途径,副产物浓度和光电特性的阳离子取代的影响。第二个目标探测了光强度,波长,气体物种和溶剂性能对具有良好和不利的能级比对的共轭聚合物系统中掺杂效率的影响。通过研究这些机制及其在光电特性中的作用,我们寻求提高掺杂效率,保留率,均匀性,并扩大有机半导体膜中可用掺杂物种的范围。 These advancements will significantly contribute to perovskite solar cell technology, facilitating the transition from fossil fuels to clean energy and enabling cost-effective, scalable manufacturing techniques to meet increasing demand.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andre Taylor其他文献

Andre Taylor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andre Taylor', 18)}}的其他基金

I-Corps: Translation potential of Advanced Material Composites for Electromagnetic Interference Shielding
I-Corps:用于电磁干扰屏蔽的先进复合材料的转化潜力
  • 批准号:
    2403871
  • 财政年份:
    2024
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Standard Grant
IUCRC Planning Grant New York University: Center for Decarbonizing Chemical Manufacturing Using Sustainable Electrification (DC-MUSE)
IUCRC 规划拨款 纽约大学:利用可持续电气化实现化学制造脱碳中心 (DC-MUSE)
  • 批准号:
    2231429
  • 财政年份:
    2023
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Standard Grant
Using and Understanding Forster Resonance Energy Transfer in Organic Polymer Based Solar Cells
使用和理解有机聚合物太阳能电池中的福斯特共振能量转移
  • 批准号:
    1410171
  • 财政年份:
    2014
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Continuing Grant
I-Corps: An Electrochemical Desalination Cell
I-Corps:电化学脱盐电池
  • 批准号:
    1237241
  • 财政年份:
    2012
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Standard Grant
PECASE: Nanoscale Assembly Approaches Toward High Performance Micro Fuel Cells
PECASE:实现高性能微型燃料电池的纳米级组装方法
  • 批准号:
    0954985
  • 财政年份:
    2010
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Standard Grant
Third-Generation Solar Technologies Multidisciplinary Workshop: Synergistic Chemistry-Materials-Mathematical Sciences Approaches to Addressing Solar Energy Problems
第三代太阳能技术多学科研讨会:协同化学-材料-数学科学方法解决太阳能问题
  • 批准号:
    1032936
  • 财政年份:
    2010
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Standard Grant

相似国自然基金

DMWD结合LATS1通过负向调控Hippo-YAP信号通路促进恶性胶质瘤干性的分子机制
  • 批准号:
    82302980
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
  • 批准号:
    32370337
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
转移相关中性粒细胞(TMAN)代谢重塑促三阴性乳腺癌嗜肺转移的作用与分子机制
  • 批准号:
    82372823
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高温胁迫交叉锻炼对梭梭幼苗耐旱性影响的分子机理研究
  • 批准号:
    32360079
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
AeAPX1交叉调控毛花猕猴桃果实AsA代谢与耐热性的分子机制
  • 批准号:
    32302490
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding the intestinal regenerative response using patterned organoids in photo-tunable PEG hydrogels
使用光可调 PEG 水凝胶中的图案化类器官了解肠道再生反应
  • 批准号:
    10153343
  • 财政年份:
    2021
  • 资助金额:
    $ 39.81万
  • 项目类别:
Understanding the intestinal regenerative response using patterned organoids in photo-tunable PEG hydrogels
使用光可调 PEG 水凝胶中的图案化类器官了解肠道再生反应
  • 批准号:
    10520033
  • 财政年份:
    2021
  • 资助金额:
    $ 39.81万
  • 项目类别:
Understanding the intestinal regenerative response using patterned organoids in photo-tunable PEG hydrogels
使用光可调 PEG 水凝胶中的图案化类器官了解肠道再生反应
  • 批准号:
    10318922
  • 财政年份:
    2021
  • 资助金额:
    $ 39.81万
  • 项目类别:
Elucidation of temperature- humidity dependence of photo-aging mechanisms for polymeric coatings on building use and accompanying macroscopic properties change
阐明聚合物涂层光老化机制对建筑用途的温度-湿度依赖性以及伴随的宏观性能变化
  • 批准号:
    19J20126
  • 财政年份:
    2019
  • 资助金额:
    $ 39.81万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Understanding valvular fibroblast mechanical memory using photo-tunable PEG hydrogels
使用光可调 PEG 水凝胶了解瓣膜成纤维细胞机械记忆
  • 批准号:
    9541843
  • 财政年份:
    2018
  • 资助金额:
    $ 39.81万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了