PECASE: Nanoscale Assembly Approaches Toward High Performance Micro Fuel Cells

PECASE:实现高性能微型燃料电池的纳米级组装方法

基本信息

  • 批准号:
    0954985
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-03-01 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

0954985TaylorFuel cells were once championed as viable alternatives to existing battery technology for energy storage. However, such hopes have not been realized due to poor assembly of the catalyst interface contributing to the meager performance of these devices. The research proposed here will use a new, integrated approach, combining the advantages of top down (microfabrication) with bottom up (electrostatic assembly) to obtain high-performance fuel cells. The work will integrate high-performance nanomaterials into a CMOS microfabricated fuel cell architecture, resulting in self-assembled nanomaterial/polyelectrolyte composites through water-based processing methods integrated into a silicon-based, microstructured fuel cell architecture. Direct alcohol fuel cells (DAFCs) are of particular interest because of the high power density of renewable liquid fuels such as ethanol. The proposed fuel cell architecture will be achieved by etching microfluidic channels into a silicon-based substrate with integrated electrodes, heaters, and temperature sensors. The substrate will serve as a platform for the layering of the catalyst nanomaterials (e.g. decorated carbon nanotubes, polymers) on top of a monolithic, open face, fuel cell architecture. Exploration of the assembly methods as well as a comprehensive assessment of materials suitable for this approach would transform this field by creating next-generation power sources that can readily be integrated with electronic devices. Intellectual MeritThe research is novel because it combines the advantages of top-down microfabrication with bottom-up electrostatic assembly to obtain unique fuel cell device structures. Furthermore, this research is potentially transformative because this new fabrication approach and its resulting device architectures have significant potential to make the breakthroughs needed to achieve high-performance alkaline fuel cells that convert ethanol, a renewable liquid fuel, directly to electricity for use in vehicles. Although the specific work will focus on alkaline direct ethanol fuel cells, the systems generated should prove to be applicable to hydrogen and bio-fuel cell systems. The research plan incorporates top-down, bottom-up, and integrative approaches. First, in the top-down approach, an integrated monolithic microstructured fuel cell design will maximize bulk and surface micromachining processing capabilities originally developed for integrated circuits and MEMs devices. Design rules will be derived to capture operating conditions (e.g., flow rates and temperatures) and design parameters (e.g., channel length, electrode design, and active area) to maximize the performance of an individual microstructured fuel cell. Second, in the bottom-up approach, nanomaterials that exploit the advantage of superior electrocatalytic activity at both the anode and cathode will be employed, using carbon nanotubes decorated with transition metal catalysts. Third, in the integrative approach, the electrostatic layer-by-layer (LBL) assembly method will be used to generate ultrathin films (on top of the monolithic fuel cell) through the alteration of polycationic and anionic polymer/nanomaterial systems. This alteration will enable the nanoscale manipulation of thin film composition and the creation of molecular level blends that would be difficult to produce using conventional fuel cell assembly methods. Parameters (e.g. ionic strength and polyion composition) will be varied to generate a highly tuned membrane electrode assembly interface built directly on top of the integrated silicon based platform.Broader Impact In addition to the traditional interdisciplinary training of graduate and undergraduate students, web-based distance learning approaches will be used to reach a larger, broader audience of students from under-represented groups through a two-stage collaborative pipeline. The first stage is the development of electrochemistry modules for a Detroit High School chemistry class using YouTube, and the second is to have undergraduates at Armstrong Atlantic State University lead the design and development of a spray coat layer-by-layer deposition machine aimed to decrease the fabrication time of functional thin films used in the research. Other activities include development of modules for a course entitled Microelectrochemical Systems.
0954985 Taylorfuel曾经被倡导是现有电池技术的可行替代品。 但是,由于催化剂界面的组装不佳,导致这些设备的性能微薄,因此尚未实现这种希望。这里提出的研究将使用一种新的集成方法,将自上而下的(微加工)与自下而上的(静电组件)相结合以获得高性能的燃料电池。这项工作将将高性能纳米材料整合到CMOS微生物燃料电池结构中,从而通过集成在基于硅的微结构燃料电池结构中的水性加工方法,从而导致自组装的纳米材料/聚电解质复合材料。直接酒精燃料电池(DAFC)特别令人感兴趣,因为可再生液体燃料(如乙醇)的高功率密度。提出的燃料电池结构将通过将微流体通道蚀刻到带有集成电极,加热器和温度传感器的基于硅的底物中来实现。底物将用作催化剂纳米材料(例如装饰碳纳米管,聚合物)在整体式,开放的面部,燃料电池建筑上的平台。探索组装方法以及适合这种方法的材料的全面评估将通过创建可以轻松与电子设备集成的下一代电源来改变这一领域。知识分子的研究是新颖的,因为它结合了自上而下的微加工与自下而上的静电组件的优势,以获得独特的燃料电池装置结构。 此外,这项研究具有潜在的变革性,因为这种新的制造方法及其所得的设备体系结构具有巨大的潜力,可以使实现高性能碱性燃料电池所需的突破,这些碱性燃料电池将乙醇转化为可再生液体燃料,直接可用于车辆中的电力。尽管特定的工作将集中在碱性直接乙醇燃料电池上,但所产生的系统应被证明适用于氢和生物燃料细胞系统。 该研究计划结合了自上而下,自下而上和综合方法。 首先,在自上而下的方法中,集成的单片微结构燃料电池设计将最大程度地发挥散装和表面微加工处理能力,最初是为集成电路和MEMS设备开发的。设计规则将得出以捕获操作条件(例如流速和温度)和设计参数(例如,通道长度,电极设计和活动区域),以最大程度地提高单个微结构燃料电池的性能。其次,在自下而上的方法中,使用用过渡金属催化剂装饰的碳纳米管,利用阳极和阴极上阳极和阴极上高电催化活性的优势的纳米材料。第三,在综合方法中,将使用多阳离子和阴离子聚合物/纳米材料系统的改变,将使用静电层(LBL)组装方法来生成超薄膜(在整体燃料电池之上)。 这种变化将使薄膜组成的纳米级操纵和分子水平混合物的创建,这些混合物很难使用常规燃料电池组装方法产生。参数(例如离子强度和Polyion组成)将有所不同,以生成直接建立在基于集成硅平台顶部的高度调谐的膜电极组件界面。Broader的影响除了传统的基于Web的学生的跨学科培训外,远程学习方法将用于通过两阶段的协作管道来吸引来自代表性不足的团体的更广泛的学生。 第一阶段是使用YouTube的底特律高中化学课程的电化学模块的开发,其次是在阿姆斯特朗大西洋州立大学的本科生领导的本科生领导的是逐层沉积机的设计和开发,旨在减少。研究中使用的功能性薄膜的制造时间。 其他活动包括开发标题为微电化学系统的课程的模块。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andre Taylor其他文献

Andre Taylor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andre Taylor', 18)}}的其他基金

I-Corps: Translation potential of Advanced Material Composites for Electromagnetic Interference Shielding
I-Corps:用于电磁干扰屏蔽的先进复合材料的转化潜力
  • 批准号:
    2403871
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Understanding Molecular And Photo-Assisted Doping of Organic Electronic Materials
了解有机电子材料的分子和光辅助掺杂
  • 批准号:
    2330929
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
IUCRC Planning Grant New York University: Center for Decarbonizing Chemical Manufacturing Using Sustainable Electrification (DC-MUSE)
IUCRC 规划拨款 纽约大学:利用可持续电气化实现化学制造脱碳中心 (DC-MUSE)
  • 批准号:
    2231429
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Using and Understanding Forster Resonance Energy Transfer in Organic Polymer Based Solar Cells
使用和理解有机聚合物太阳能电池中的福斯特共振能量转移
  • 批准号:
    1410171
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
I-Corps: An Electrochemical Desalination Cell
I-Corps:电化学脱盐电池
  • 批准号:
    1237241
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Third-Generation Solar Technologies Multidisciplinary Workshop: Synergistic Chemistry-Materials-Mathematical Sciences Approaches to Addressing Solar Energy Problems
第三代太阳能技术多学科研讨会:协同化学-材料-数学科学方法解决太阳能问题
  • 批准号:
    1032936
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

纳米级相变薄膜的反常结晶动力学行为及其存储器件特性研究
  • 批准号:
    62374096
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
肿瘤细胞纳米级凋亡小体诱导获得性胸腺耐受效应的作用与机制研究
  • 批准号:
    32300576
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
单粒子效应对基于纳米级异构多核SoC的卷积神经网络系统影响机理研究
  • 批准号:
    12305303
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于亚纳米级高速摩擦抛光下的金刚石亚表面跨尺度损伤演变与控制机制
  • 批准号:
    52302036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于同步辐射光源的纳米级分辨X射线谱学成像方法研究
  • 批准号:
    12275343
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

Amplification of chiral recognition and discrimination among amino-acid-based nanoscale ions during assembly induced by electrostatic interaction
静电相互作用诱导组装过程中氨基酸纳米级离子之间手性识别和辨别的放大
  • 批准号:
    2309886
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Nanoscopic Membrane Modulations Induced by Nanoscale Oligomers
纳米级低聚物诱导的纳米膜调节
  • 批准号:
    10790511
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Next-generation optical nanoprobes: From quantum biosensing to cellular monitoring
下一代光学纳米探针:从量子生物传感到细胞监测
  • 批准号:
    10622691
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Nanoscale assembly of amyloid oligomers at physiologically relevant conditions
淀粉样蛋白寡聚物在生理相关条件下的纳米级组装
  • 批准号:
    10733250
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Investigating the Assembly of Bacterial Encapsulins for the Efficient Engineering of Nanoscale Bioreactors
研究细菌封装蛋白的组装以实现纳米级生物反应器的高效工程
  • 批准号:
    2875161
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了