CRII: III: Towards Improving the Handling of Heterogeneity and Personalization in Federated Learning

CRII:III:改进联邦学习中异构性和个性化的处理

基本信息

  • 批准号:
    2246067
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

As awareness of the need for privacy preservation continues to grow in society, new legal restrictions, such as the General Data Protection Regulation (GDPR), are emerging. Such laws demand that businesses and organizations not share their clients' raw data for any commercial purposes. Federated Learning (FL) is a distributed machine learning paradigm that works with decentralized data while preserving privacy. FL has gained widespread interest and has been applied in numerous applications, such as healthcare, education, and intelligent manufacturing. However, FL faces some challenges that come from, executing on diverse types of data and devices, such as mobile phones and Internet of Things (IoT) devices. This project aims to address the aforementioned issues in heterogeneous FL by developing mathematical models and efficient algorithms. In addition, the project will integrate trustworthy ML research into new curriculum development and support students from underrepresented groups.Heterogeneous FL faces two significant challenges: (1) each client in FL may generate data according to a distinct distribution; (2) heterogeneous clients, such as mobile phones and IoT devices, are equipped with a wide range of computation and communication capabilities. To address these challenges, this project will dramatically push the boundary of knowledge via the following two integrated research thrusts: (i) The research team aims to tackle data heterogeneity in FL by designing two advanced personalized learning methods. Specifically, the proposed solutions aim to balance the generalization ability from the global model and the personalization ability from the local model, improving both the global model and personalized local models. (ii) The team will study heterogeneous neural network aggregation for FL by providing advanced memory-efficient local training strategies for small devices. In addition, the project will make use of mutual knowledge distillation to improve the generalization ability of the local models. Finally, the team proposes a unified FL framework that integrates data-free knowledge aggregation with advanced memory-efficient solutions to tackle both heterogeneity issues simultaneously.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着社会对隐私保护必要性的认识不断增强,新的法律限制不断涌现,例如《通用数据保护条例》(GDPR)。此类法律要求企业和组织不得出于任何商业目的共享客户的原始数据。联邦学习 (FL) 是一种分布式机器学习范例,可在保护隐私的同时处理分散数据。 FL 引起了广泛的兴趣,并已应用于医疗、教育、智能制造等众多领域。然而,FL 面临着一些挑战,这些挑战来自于在不同类型的数据和设备上执行,例如移动电话和物联网 (IoT) 设备。该项目旨在通过开发数学模型和高效算法来解决异构 FL 中的上述问题。此外,该项目还将把值得信赖的机器学习研究融入到新课程开发中,并为来自代表性不足群体的学生提供支持。异构 FL 面临两个重大挑战:(1)每个 FL 客户可能会根据不同的分布生成数据; (2)异构客户端,例如手机和物联网设备,配备了广泛的计算和通信能力。为了应对这些挑战,该项目将通过以下两个综合研究重点极大地拓展知识的边界:(i)研究团队旨在通过设计两种先进的个性化学习方法来解决 FL 中的数据异构性。具体来说,所提出的解决方案旨在平衡全局模型的泛化能力和局部模型的个性化能力,同时改进全局模型和个性化局部模型。 (ii) 该团队将通过为小型设备提供先进的内存高效本地训练策略来研究 FL 的异构神经网络聚合。此外,该项目将利用相互知识蒸馏来提高局部模型的泛化能力。最后,该团队提出了一个统一的 FL 框架,将无数据的知识聚合与先进的内存高效解决方案相结合,以同时解决异质性问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和能力进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lichao Sun其他文献

The histone acetyltransferase MOF is required for the cellular stress response.
组蛋白乙酰转移酶 MOF 是细胞应激反应所必需的。
  • DOI:
    10.1016/j.scib.2017.11.012
  • 发表时间:
    2017-11-21
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Yang Yang;Xiaofei Han;Jing He;Xinghong Guo;A. S. Shaikh;Lichao Sun;Shuang Gao;Yiran Liang;Meng Wang;Xiangzhi Li
  • 通讯作者:
    Xiangzhi Li
Thermal degradation and flammability properties of multilayer structured wood fiber and polypropylene composites with fire retardants
多层结构木纤维与阻燃剂聚丙烯复合材料的热降解和燃烧性能
  • DOI:
    10.1039/c5ra23262g
  • 发表时间:
    2016-02-02
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Lichao Sun;Qinglin Wu;Yanjun Xie;Fengqiang Wang;Qingwen Wang
  • 通讯作者:
    Qingwen Wang
Acute liver failure as initial presentation in a Chinese patient with Budd-Chiari syndrome due to protein C deficiency: A case report and literature review
1例中国蛋白C缺乏所致布加氏综合征患者首发急性肝功能衰竭一例报告及文献复习
  • DOI:
    10.1016/j.heliyon.2024.e29776
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Wanling Xu;Wenjing Tang;Weiying Yang;Lichao Sun;Wei Li;Shouqing Wang;Xiuxian Zang
  • 通讯作者:
    Xiuxian Zang
Decision Mamba: Reinforcement Learning via Hybrid Selective Sequence Modeling
决策曼巴:通过混合选择性序列建模进行强化学习
  • DOI:
    10.48550/arxiv.2406.00079
  • 发表时间:
    2024-05-31
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sili Huang;Jifeng Hu;Zhe Yang;Liwei Yang;Tao Luo;Hechang Chen;Lichao Sun;Bo Yang
  • 通讯作者:
    Bo Yang
Membership Inference via Backdooring
通过后门进行成员资格推断
  • DOI:
    10.48550/arxiv.2206.04823
  • 发表时间:
    2022-06-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongsheng Hu;Z. Salcic;G. Dobbie;Jinjun Chen;Lichao Sun;Xuyun Zhang
  • 通讯作者:
    Xuyun Zhang

Lichao Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

两自由度磁通切换电机轴-周向三维气隙磁场调制行为研究
  • 批准号:
    52307070
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
三维弹性壳体斜向入水的自由面演变及载荷特性研究
  • 批准号:
    12302314
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自由基促进的惰性三级碳手性中心差向异构化反应研究
  • 批准号:
    22371128
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
真三向加卸荷下含硬性结构面深部硬岩失稳致灾机制研究
  • 批准号:
    52309137
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
含斜向纱变厚度复合材料预制体三维织造多参数耦合成形机制研究
  • 批准号:
    52305376
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII:III:Towards Advanced Filtering and Pooling Operations for Graph Neural Networks
CRII:III:走向图神经网络的高级过滤和池化操作
  • 批准号:
    2406647
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: III: Towards Reasoning Augmented Searching for Domain-Specific Knowledge Screening
CRII:III:针对特定领域知识筛选的推理增强搜索
  • 批准号:
    2245907
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
  • 批准号:
    2412340
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII:III:Towards Advanced Filtering and Pooling Operations for Graph Neural Networks
CRII:III:走向图神经网络的高级过滤和池化操作
  • 批准号:
    2153326
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: III: Towards Effective and Efficient City-scale Traffic Reconstruction
CRII:III:迈向有效和高效的城市规模交通重建
  • 批准号:
    2153426
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了