FuSe: Electronic-photonic heterogeneous integration for sensing above 1 THz
FuSe:电子-光子异构集成,用于 1 THz 以上的传感
基本信息
- 批准号:2329124
- 负责人:
- 金额:$ 195.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to boost the high-frequency operating limit for conventional silicon-based semiconductor electronic devices and systems so that they can generate and detect electromagnetic radiation with frequencies above 1 terahertz (THz). Bipolar CMOS (BiCMOS) chips fabricated at silicon foundries using standard processes have been shown to generate radiation approaching, and even exceeding 1 THz. However, in general such electronic devices (e.g. semiconductor transistors, diodes) have difficulty to generate significant levels of power at such high frequencies, in part because the oscillating electrons which drive the antennas cannot travel back and forth quickly enough. However, 1 THz is a natural crossover point between electronic and photonic devices (e.g. lasers). Photonic devices are not limited by how fast free electrons move, because they generate radiation based upon a different principle: the stimulated emission of terahertz photons due to transitions of electronic between quantized energy levels. This phenomenon will be leveraged to create quantum-cascade (QC) photonic amplifiers (made of III-V semiconductors) that will amplify the weak terahertz signals generated by silicon BiCMOS electronic chips. Towards this end, novel microfabrication techniques will be used to integrate the BiCMOS electronic chips with the III-V laser chips in close proximity on a common silicon interconnect fabric. This project will culminate in the demonstration of a system that uses these terahertz signals to detect the “spectral fingerprints” of various gasses – including several which are atmospheric environmental toxins. This research addresses a grand challenge for semiconductor technology: how to extend integrated circuit semiconductor technology to fully cover the terahertz range. This application has significant societal impact, such as in environmental sensing (e.g. residential air quality, pollutant monitoring), as well as industrial/defense/aero gas sensing (e.g. for energy, propulsion, and planetary entry), and science (astrophysics, fire science, combustion). Workforce development will be organized around a robust undergraduate research program – a well-established strategy for attracting and retaining students to a discipline. A cohort of paid undergraduate researchers will be recruited, particularly focusing on incoming transfer students, underrepresented minority students, and departmental honors students. In addition to participation in research, they will participate in a robust professional development program, a semiconductor based academic curriculum (including microfabrication), and participation in industry internships.The goal of this project is to extend the reach of high-frequency semiconductor electronics above 1 THz by (a) developing a system for heterogeneous integration of silicon BiCMOS chips that generate THz pulses with III-V terahertz quantum-cascade (QC) laser gain material, (b) using this system to develop a hybrid THz dual-comb transmitter/receiver for multi-heterodyne spectroscopy above 1.5 THz, and (c) demonstrating this system for multi-gas sensing with applications in environmental and industrial monitoring. The approach builds upon specially designed BiCMOS frequency-comb generator chips that have been shown to emit signals up to 3 THz (albeit with low output power); these signals will then be amplified by THz QC travelling-wave power amplifiers. The intellectual merit lies first in the use of quantum-cascade photonic gain material to extend the performance of BiCMOS-foundry electronics above 1 THz. The resulting hybrid systems will exhibit the advantages of CMOS (reduced size and weight, increased integration and signal processing capability), with the power generation of III-V quantum-cascade lasers above 1 THz. Second, merit lies in the development of a terahertz silicon interconnect fabric, which will leverage advanced chiplet technology to place BiCMOS and III-V chiplets in close proximity with micron-scale alignment precision for low-loss THz interconnects. This research addresses three levels on the stack: materials (QC material development), devices (heterogeneous integration fabric, BiCMOS THz integrated circuits, and QC-amplifiers), and systems (dual-comb spectroscopy for gas sensing).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是提高基于硅的半导体电子设备和系统的高频操作极限,以便它们可以以高于1 Terahertz(THZ)的频率生成和检测电子辐射。已经证明,使用标准工艺在硅铸造厂制造的双极CMOS(BICMOS)芯片已显示出辐射接近,甚至超过1THz。但是,总的来说,这种电子设备(例如,半导体晶体管,演讲)很难在这种高频率下产生显着的功率,部分原因是驱动天线的振荡电子无法足够快地来回传播。但是,1 THZ是电子和光子设备(例如激光器)之间的自然交叉点。光子设备不受自由电子移动的限制,因为它们基于不同的原理产生辐射:由于量化能量水平之间电子的过渡,Terahertz照片的刺激发射。该现象将被利用以创建量子cascade(QC)光子放大器(由III-V半导体制成),该放大器将放大由硅BICMOS电子芯片产生的弱Terahertz信号。为此,新型的微加工技术将用于将BICMOS电子芯片与III-V激光芯片集成,并在普通的硅互连织物上近距离地集成。该项目将在使用这些Terahertz信号来检测各种气体的“光谱指纹”的系统的演示中达到顶峰,其中包括几种大气环境毒素。这项研究应对半导体技术的巨大挑战:如何扩展集成电路半导体技术以完全覆盖Terahertz范围。该应用具有重大的社会影响,例如环境敏感性(例如居民空气质量,污染物监测)以及工业/防御/空气气体敏感性(例如,用于能源,推进和行星进入)和科学(天体物理学,消防科学,组合)。劳动力发展将围绕一项强大的本科研究计划组织,这是一种良好的策略,用于吸引和留住学生进入纪律。将招募一批有偿的本科研究人员,特别是专注于传入的转学学生,代表性不足的少数民族学生和部门荣誉学生。 In addition to participation in research, they will participate in a robust professional development program, a semiconductor based academic curriculum (including microfabrication), and participation in industry internships.The goal of this project is to extend the reach of high-frequency semiconductor electronics above 1 THz by (a) developing a system for heterogeneous Integration of silicon BiCMOS chips that generate THz pulses with III-V Terahertz Quantum-cascade(QC)激光增益材料,(b)使用该系统来开发1.5 THz高于1.5 THz的多杂化光谱法的混合THZ双重炸弹发射器/接收器,以及(c)在环境和工业监测中的应用中,该系统用于多气体敏感性。该方法建立在经过特殊设计的BICMOS频率炸弹发生器芯片上,这些芯片已显示出发射信号高达3 THz(尽管具有低输出功率);然后,这些信号将成为THZ QC Travelling-Wave功率放大器的放大器。智力优点首先是使用量子cascade光子增益材料,以将BICMOS-INDRY电子设备的性能扩展到1 THz以上。所得的混合动力系统将执行CMO的优势(尺寸和权重降低,集成和信号处理能力),并在1 THz以上的IIII-V量子cascade激光器发电。其次,优点在于发展Terahertz硅互连织物,该面料将利用先进的芯片技术将BICMOS和IIII-V芯片与低损坏THZ互连的微米尺度比对精度紧密接近。这项研究涉及堆栈上的三个级别:材料(QC材料开发),设备(异质整合结构,BICMOS THZ集成电路和QC-放大器)和系统(对气体敏感性的双弹力光谱)。这是NSF的法定任务,并通过评估范围来表现出众多的依据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Williams其他文献
Athlete Recruitment and the Myth of the Sophomore Peak
运动员招募与大二巅峰神话
- DOI:
10.1080/00031305.2022.2127896 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
M. McGee;Benjamin Williams;Jacy Sparks - 通讯作者:
Jacy Sparks
Controlling for ability using test scores
使用考试成绩控制能力
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.1
- 作者:
Benjamin Williams - 通讯作者:
Benjamin Williams
Quality Differentiation and Matching Performance in Peer-to-Peer Markets: Evidence from Airbnb Plus
点对点市场的质量差异化和匹配表现:来自 Airbnb Plus 的证据
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hongchang Wang;Benjamin Williams;Karen L. Xie;Wei Chen - 通讯作者:
Wei Chen
Minimum Wage and Women’s Decision-Making Power within Households: Evidence from Indonesia
最低工资和妇女在家庭中的决策权:来自印度尼西亚的证据
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2
- 作者:
J. Kim;Benjamin Williams - 通讯作者:
Benjamin Williams
Analysis of a Cryptographically Secure Pseudo Random Number Generator
密码学安全伪随机数生成器的分析
- DOI:
10.1109/idaacs58523.2023.10348766 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Benjamin Williams;Robert E. Hiromoto;Albert Carlson - 通讯作者:
Albert Carlson
Benjamin Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Williams', 18)}}的其他基金
Collaborative Research: SiGeSn-based heterostructures for intersubband photonic materials
合作研究:基于SiGeSn的子带间光子材料异质结构
- 批准号:
2320178 - 财政年份:2023
- 资助金额:
$ 195.72万 - 项目类别:
Standard Grant
Tracer-free, non-intrusive, time- and space-resolved temperature and scalar measurements
无示踪剂、非侵入式、时间和空间分辨的温度和标量测量
- 批准号:
EP/T030925/1 - 财政年份:2020
- 资助金额:
$ 195.72万 - 项目类别:
Research Grant
Travel Support of Infrared Terahertz Quantum Workshop 2019, To Be Held in Ojai California, September 15-20 2019
2019年红外太赫兹量子研讨会的旅行支持,将于2019年9月15日至20日在加利福尼亚州奥海举行
- 批准号:
1901772 - 财政年份:2019
- 资助金额:
$ 195.72万 - 项目类别:
Standard Grant
GOALI: Mid-infrared quantum-cascade metasurfaces for external cavity lasers
GOALI:用于外腔激光器的中红外量子级联超表面
- 批准号:
1809673 - 财政年份:2018
- 资助金额:
$ 195.72万 - 项目类别:
Standard Grant
Engineered antiferromagnetic materials for terahertz magnon-polaritons
用于太赫兹磁振子的工程反铁磁材料
- 批准号:
1810163 - 财政年份:2018
- 资助金额:
$ 195.72万 - 项目类别:
Standard Grant
Broadband terahertz metasurface lasers
宽带太赫兹超表面激光器
- 批准号:
1711892 - 财政年份:2017
- 资助金额:
$ 195.72万 - 项目类别:
Standard Grant
NSF INCLUDES DDLP: IM STEM
NSF 包括 DDLP:IM STEM
- 批准号:
1744472 - 财政年份:2017
- 资助金额:
$ 195.72万 - 项目类别:
Standard Grant
Active THz polarization laser imaging
主动太赫兹偏振激光成像
- 批准号:
1610892 - 财政年份:2016
- 资助金额:
$ 195.72万 - 项目类别:
Standard Grant
相似国自然基金
肖特基结光电转换系统中光子和电子相互作用的机理研究与调控
- 批准号:12364008
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
叠层二维狄拉克电子体系中的等离激元光子学
- 批准号:12274301
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
叠层二维狄拉克电子体系中的等离激元光子学
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于上海硬X射线自由电子激光装置的暗光子探测实验关键技术预研究
- 批准号:
- 批准年份:2021
- 资助金额:300 万元
- 项目类别:国际(地区)合作与交流项目
应用于光电子集成设计自动化的无源光子器件建模技术研究
- 批准号:
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
相似海外基金
SPIKEPro - SPIKING PHOTONIC-ELECTRONIC IC FOR QUICK AND EFFICIENT PROCESSING
SPIKEPro - 用于快速高效处理的 SPIKING 光子电子 IC
- 批准号:
10098316 - 财政年份:2024
- 资助金额:
$ 195.72万 - 项目类别:
EU-Funded
High color purity and multicolor luminescence based on precise synthesis and electronic structure design of multinary quantum dots
基于多元量子点的精确合成和电子结构设计的高色纯度和多色发光
- 批准号:
23H01786 - 财政年份:2023
- 资助金额:
$ 195.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of pi-electronic liquid crystal molecules for advanced photofunctional materials
用于先进光功能材料的π电子液晶分子的开发
- 批准号:
23H02036 - 财政年份:2023
- 资助金额:
$ 195.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
MRes in Connected Electronic and Photonic Systems (CEPS)
互联电子与光子系统研究硕士(CEPS)
- 批准号:
2894752 - 财政年份:2023
- 资助金额:
$ 195.72万 - 项目类别:
Studentship
MRes year on the CDT in Connected Electronic and Photonic Systems
互联电子和光子系统 CDT 硕士研究年
- 批准号:
2867316 - 财政年份:2023
- 资助金额:
$ 195.72万 - 项目类别:
Studentship