Collaborative Research: SiGeSn-based heterostructures for intersubband photonic materials

合作研究:基于SiGeSn的子带间光子材料异质结构

基本信息

  • 批准号:
    2320178
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Non-technical description:The goal of this project is to study and develop a new semiconductor material system based upon alloys of silicon, germanium, and tin (SiGeSn). This activity builds upon the expertise of one of the team in developing SiGeSn materials for a variety of photonic devices in the near- and mid-infrared (such as lasers and photodetectors). Theoretical work has predicted that SiGeSn materials could be grown in alternating atomically sharp stacks with germanium (Ge) layers to make sets of quantum wells whose electronic energy levels can be engineered by design to give an optical response in an undeveloped part of the electromagnetic spectrum: the very long wavelength infrared and the terahertz. Furthermore, due to the fact that each of the constituent atoms of the material resides in the same column of the periodic table (Group IV), the vibrations of the crystal do not induce electric dipoles and hence will not interact much with light and electrons – a highly beneficial property. Fundamental studies are pursued to (a) grow the specific compositions of the SiGeSn material in layered stacks with atomically sharp interfaces, (b) characterize the fundamental electronic properties of such materials, and (c) show in a proof-of-concept demonstration that a far-infrared optical transition can be engineered according to our designs. If successful, this work lays the foundation for new far-infrared and terahertz lasers and photodetectors so as to fully exploit the electromagnetic spectrum. In addition to the involvement of graduate and undergraduate students, one principal investigator participates in a research projects course designed for the recruitment and retention of underrepresented minority first-year engineering students, and the other principal investigator recruits involved students from a local HBCU. This new semiconductor material system is highly compatible with mainstream silicon semiconductor technology, which will ease transition to industry and will advance future US semiconductor manufacturing interests. Technical description:The research goal of this project is to investigate lattice-matched Ge/SiGeSn heterostructure quantum wells as a new material system for n-type intersubband optoelectronic devices in the mid-infrared and far-infrared spectral range. The motivation lies in the fact that such group-IV semiconductors are non-polar, which results in a dramatically different character of the optical phonon interactions compared with III-V heterostructures widely used for intersubband devices. For example, (a) there is dramatically reduced intersubband electron-phonon nonradiative scattering and (b) drastic reduction of the strong absorption of light by optical phonons associated with the Reststrahlen band. If successfully developed, this material system could lead to terahertz quantum-cascade lasers that operate at room-temperature with low power consumption; high-sensitivity quantum-well infrared photodetectors in the far- and mid-infrared; the ability to newly reach the far-infrared wavelengths of 30-60 microns with group IV semiconductor devices not accessible with conventional III-V materials. The research comprises complementary efforts in materials growth and characterization, THz and far-infrared intersubband optical spectroscopy, and culminating in a proof-of-concept demonstration of intersubband based photoconductivity. Development of the SiGeSn material system for infrared and THz photonics opens the possibility of foundry-based growth of devices on 300-mm wafers, and integration with next generation integrated “silicon” photonic platforms in the mid-infrared. This has the potential to benefit many applications in sensing, thermal imaging, communications, and spectroscopy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:该项目的目标是研究和开发一种基于硅、锗和锡合金 (SiGeSn) 的新型半导体材料系统。这项活动建立在开发 SiGeSn 材料的团队之一的专业知识之上。各种近红外和中红外光子器件(例如激光器和光电探测器)预测 SiGeSn 材料可以以交替的原子尖锐堆叠方式生长。与锗(Ge)层形成量子阱组,其电子能级可以通过设计进行设计,以在电磁波谱的未开发部分(非常长波长红外和太赫兹)中产生光学响应。由于材料的每个组成原子都位于元素周期表的同一列(第四族),因此晶体的振动不会产生电偶极子,因此不会与光和电子发生太多相互作用 -基础研究致力于 (a) 在具有原子锐利界面的层状堆叠中生长 SiGeSn 材料的特定成分,(b) 表征此类材料的基本电子特性,以及 (c) 在证明中展示。 -概念论证,可以根据我们的设计来设计远红外光学跃迁。如果成功,这项工作将为新型远红外和太赫兹激光器和光电探测器奠定基础,从而充分利用这一潜力。除了研究生和本科生的参与外,一名首席研究员还参加了一个研究项目课程,该课程旨在招募和保留代表性不足的少数族裔一年级工程学生,另一名首席研究员则招募来自当地 HBCU 的学生。这种新的半导体材料系统与主流硅半导体技术高度兼容,这将简化向工业的过渡,并促进未来美国半导体制造的兴趣。该项目的研究目标是研究晶格匹配的Ge/SiGeSn异质结构。量子阱作为中红外和远红外光谱范围内n型子带间光电器件的新材料系统,其动机在于这种IV族半导体是非极性的,这导致了显着不同的特性。与广泛用于子带间器件的 III-V 异质结构相比,光学声子相互作用的显着减少,例如,(a) 子带间电子声子非辐射散射显着减少,(b) 显着减少。与 Reststrahlen 波段相关的光学声子对光的强烈吸收如果成功开发,该材料系统可以在室温下以低功耗运行的太赫兹量子级联激光器;远红外和中红外;使用 IV 族半导体器件能够达到传统 III-V 族材料无法达到的 30-60 微米远红外波长。包括材料生长和表征、太赫兹和远红外子带间光谱学方面的互补努力,最终实现了基于子带间光电导性的概念验证演示,用于红外和太赫兹光子学的 SiGeSn 材料系统的开发开启了代工的可能性。基于 300 毫米晶圆的器件生长,以及与中红外下一代集成“硅”光子平台的集成,这具有潜力。使传感、热成像、通信和光谱学领域的许多应用受益。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Williams其他文献

Inclusion of the ligand field contribution in a polarizable molecular mechanics: SIBFA‐LF
将配体场贡献纳入可极化分子力学中:SIBFA-LF
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Jean‐Philip Piquemal;Benjamin Williams;Natalie Fey;R. Deeth;N. Gresh;C. Giessner
  • 通讯作者:
    C. Giessner
Does Price Influence Assessment of Fundamental Value? Experimental Evidence
价格会影响基本价值的评估吗?
  • DOI:
    10.1080/15427560.2013.848866
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    S. Marsat;Benjamin Williams
  • 通讯作者:
    Benjamin Williams
Nonparametric identification of discrete choice models with lagged dependent variables
具有滞后因变量的离散选择模型的非参数识别
  • DOI:
    10.1016/j.jeconom.2019.08.005
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Benjamin Williams
  • 通讯作者:
    Benjamin Williams
Adi's Maze and the Research Arcade: A Long-term Study on the Impact of Gendered Representation on Player Preferences
阿迪的迷宫和研究领域:关于性别代表对玩家偏好影响的长期研究
  • DOI:
    10.2312/cgvc.20211318
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Headleand;Beth Davies;Benjamin Williams
  • 通讯作者:
    Benjamin Williams
Athlete Recruitment and the Myth of the Sophomore Peak
运动员招募与大二巅峰神话
  • DOI:
    10.1080/00031305.2022.2127896
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. McGee;Benjamin Williams;Jacy Sparks
  • 通讯作者:
    Jacy Sparks

Benjamin Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Williams', 18)}}的其他基金

FuSe: Electronic-photonic heterogeneous integration for sensing above 1 THz
FuSe:电子-光子异构集成,用于 1 THz 以上的传感
  • 批准号:
    2329124
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Mode-locked THz QC-VECSELs
锁模太赫兹 QC-VECSEL
  • 批准号:
    2041165
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Tracer-free, non-intrusive, time- and space-resolved temperature and scalar measurements
无示踪剂、非侵入式、时间和空间分辨的温度和标量测量
  • 批准号:
    EP/T030925/1
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
Travel Support of Infrared Terahertz Quantum Workshop 2019, To Be Held in Ojai California, September 15-20 2019
2019年红外太赫兹量子研讨会的旅行支持,将于2019年9月15日至20日在加利福尼亚州奥海举行
  • 批准号:
    1901772
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
GOALI: Mid-infrared quantum-cascade metasurfaces for external cavity lasers
GOALI:用于外腔激光器的中红外量子级联超表面
  • 批准号:
    1809673
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Engineered antiferromagnetic materials for terahertz magnon-polaritons
用于太赫兹磁振子的工程反铁磁材料
  • 批准号:
    1810163
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Broadband terahertz metasurface lasers
宽带太赫兹超表面激光器
  • 批准号:
    1711892
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
NSF INCLUDES DDLP: IM STEM
NSF 包括 DDLP:IM STEM
  • 批准号:
    1744472
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Active THz polarization laser imaging
主动太赫兹偏振激光成像
  • 批准号:
    1610892
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Nanopillar quantum cascade lasers
纳米柱量子级联激光器
  • 批准号:
    1509801
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

硅基锗锡合金的深能级缺陷和发光性能研究
  • 批准号:
    62205107
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
硅(锗、锡)烯拓扑异质结中的边缘态输运性质及调控研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
硅基锗锡合金的深能级缺陷和发光性能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向光电子集成芯片应用的硅基直接带隙锗锡材料与发光器件研究
  • 批准号:
    62274190
  • 批准年份:
    2022
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
金属锡锗掺杂对柔性硅基多晶薄膜的室温热电性能提升研究
  • 批准号:
    52061009
  • 批准年份:
    2020
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
Opening Spaces and Places for the Inclusion of Indigenous Knowledge, Voice and Identity: Moving Indigenous People out of the Margins
为包容土著知识、声音和身份提供开放的空间和场所:使土著人民走出边缘
  • 批准号:
    477924
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Salary Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了