Collaborative Research: SiGeSn-based heterostructures for intersubband photonic materials
合作研究:基于SiGeSn的子带间光子材料异质结构
基本信息
- 批准号:2320178
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical description:The goal of this project is to study and develop a new semiconductor material system based upon alloys of silicon, germanium, and tin (SiGeSn). This activity builds upon the expertise of one of the team in developing SiGeSn materials for a variety of photonic devices in the near- and mid-infrared (such as lasers and photodetectors). Theoretical work has predicted that SiGeSn materials could be grown in alternating atomically sharp stacks with germanium (Ge) layers to make sets of quantum wells whose electronic energy levels can be engineered by design to give an optical response in an undeveloped part of the electromagnetic spectrum: the very long wavelength infrared and the terahertz. Furthermore, due to the fact that each of the constituent atoms of the material resides in the same column of the periodic table (Group IV), the vibrations of the crystal do not induce electric dipoles and hence will not interact much with light and electrons – a highly beneficial property. Fundamental studies are pursued to (a) grow the specific compositions of the SiGeSn material in layered stacks with atomically sharp interfaces, (b) characterize the fundamental electronic properties of such materials, and (c) show in a proof-of-concept demonstration that a far-infrared optical transition can be engineered according to our designs. If successful, this work lays the foundation for new far-infrared and terahertz lasers and photodetectors so as to fully exploit the electromagnetic spectrum. In addition to the involvement of graduate and undergraduate students, one principal investigator participates in a research projects course designed for the recruitment and retention of underrepresented minority first-year engineering students, and the other principal investigator recruits involved students from a local HBCU. This new semiconductor material system is highly compatible with mainstream silicon semiconductor technology, which will ease transition to industry and will advance future US semiconductor manufacturing interests. Technical description:The research goal of this project is to investigate lattice-matched Ge/SiGeSn heterostructure quantum wells as a new material system for n-type intersubband optoelectronic devices in the mid-infrared and far-infrared spectral range. The motivation lies in the fact that such group-IV semiconductors are non-polar, which results in a dramatically different character of the optical phonon interactions compared with III-V heterostructures widely used for intersubband devices. For example, (a) there is dramatically reduced intersubband electron-phonon nonradiative scattering and (b) drastic reduction of the strong absorption of light by optical phonons associated with the Reststrahlen band. If successfully developed, this material system could lead to terahertz quantum-cascade lasers that operate at room-temperature with low power consumption; high-sensitivity quantum-well infrared photodetectors in the far- and mid-infrared; the ability to newly reach the far-infrared wavelengths of 30-60 microns with group IV semiconductor devices not accessible with conventional III-V materials. The research comprises complementary efforts in materials growth and characterization, THz and far-infrared intersubband optical spectroscopy, and culminating in a proof-of-concept demonstration of intersubband based photoconductivity. Development of the SiGeSn material system for infrared and THz photonics opens the possibility of foundry-based growth of devices on 300-mm wafers, and integration with next generation integrated “silicon” photonic platforms in the mid-infrared. This has the potential to benefit many applications in sensing, thermal imaging, communications, and spectroscopy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:该项目的目的是根据硅,锗和锡(Sigesn)研究和开发一种新的半导体材料系统。这项活动基于该团队之一开发Sigesn材料的专业知识,用于近红外和中红外(例如激光器和光电探测器)中的各种光子设备。理论工作已经预测,可以在带有锗(GE)层的锋利堆栈中生长Sigesn材料,以制作一组量子井,这些量子井可以通过设计设计,其电子能级可以在电子光谱的未开发部分中给出光学响应:非常长的波长基调和Terahertz。此外,由于在周期表(第四组)中相同列中材料住宅的每个组成原子(第四组),晶体的振动不会诱导电偶极子,因此不会与光和电子相互作用 - 一种非常有益的特性。对(a)进行了基本研究,在具有明显尖锐界面的分层堆栈中增强了Sigesn材料的特定组成,(b)表征了此类材料的基本电子性质,并且(c)在概念验证的证明中表明,远方的光学转换可以根据我们的设计进行设计。如果成功的话,这项工作将为新的远红外和Terahertz激光器和光电探测器奠定基础,从而充分探索电子光谱。除了研究生和本科生的参与外,一位首席研究员还参加了一项研究项目课程,旨在招募和保留代表人数不足的少数族裔一年级工程专业的学生,而其他主要研究人员招聘涉及当地HBCU的学生。这种新的半导体材料系统与主流硅半导体技术高度兼容,该系统将简化向行业过渡,并将推动未来的美国半导体制造业兴趣。技术描述:该项目的研究目标是调查晶格匹配的GE/Sigesn异质结构量子井,作为在中红外和远面光谱范围内的N型InterSubband InterSubband ieterSubband optoelectronic设备的新材料系统。动机在于这样一个事实,即这种组IV半导体是非极态的,这导致光子声子相互作用的特征与IIII-V异质结构相比广泛用于间隔设备。例如,(a)大幅度降低了sublband电子 - phonon非放射性散射,以及(b)与RESTSTRAHLEN频带相关的光学声子对光的强滥用的急剧降低。如果成功开发,该材料系统可能会导致Terahertz Quantum-cascade激光器在室温下以低功耗的量运行;远红外和中红外的高敏性量子孔感染的光电遗传学;使用常规III-V材料无法访问的IV组半导体设备新近达到30-60微米的远红外波长的能力。这项研究包括在材料生长和表征,THZ和远红外跨带光谱方面的全面努力,并在基于Subband的光电传统的概念验证证明中达到顶点。用于红外和THZ光子学的Sigesn材料系统的开发为300毫米波的基于铸造的设备增长开辟了可能性,并与下红外的下一代集成的“硅”光子平台集成。这有可能使许多应用于感应,热成像,通信和光谱法上的应用。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Williams其他文献
Athlete Recruitment and the Myth of the Sophomore Peak
运动员招募与大二巅峰神话
- DOI:
10.1080/00031305.2022.2127896 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
M. McGee;Benjamin Williams;Jacy Sparks - 通讯作者:
Jacy Sparks
Controlling for ability using test scores
使用考试成绩控制能力
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.1
- 作者:
Benjamin Williams - 通讯作者:
Benjamin Williams
Quality Differentiation and Matching Performance in Peer-to-Peer Markets: Evidence from Airbnb Plus
点对点市场的质量差异化和匹配表现:来自 Airbnb Plus 的证据
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hongchang Wang;Benjamin Williams;Karen L. Xie;Wei Chen - 通讯作者:
Wei Chen
Minimum Wage and Women’s Decision-Making Power within Households: Evidence from Indonesia
最低工资和妇女在家庭中的决策权:来自印度尼西亚的证据
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2
- 作者:
J. Kim;Benjamin Williams - 通讯作者:
Benjamin Williams
Analysis of a Cryptographically Secure Pseudo Random Number Generator
密码学安全伪随机数生成器的分析
- DOI:
10.1109/idaacs58523.2023.10348766 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Benjamin Williams;Robert E. Hiromoto;Albert Carlson - 通讯作者:
Albert Carlson
Benjamin Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Williams', 18)}}的其他基金
FuSe: Electronic-photonic heterogeneous integration for sensing above 1 THz
FuSe:电子-光子异构集成,用于 1 THz 以上的传感
- 批准号:
2329124 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Tracer-free, non-intrusive, time- and space-resolved temperature and scalar measurements
无示踪剂、非侵入式、时间和空间分辨的温度和标量测量
- 批准号:
EP/T030925/1 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Research Grant
Travel Support of Infrared Terahertz Quantum Workshop 2019, To Be Held in Ojai California, September 15-20 2019
2019年红外太赫兹量子研讨会的旅行支持,将于2019年9月15日至20日在加利福尼亚州奥海举行
- 批准号:
1901772 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
GOALI: Mid-infrared quantum-cascade metasurfaces for external cavity lasers
GOALI:用于外腔激光器的中红外量子级联超表面
- 批准号:
1809673 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Engineered antiferromagnetic materials for terahertz magnon-polaritons
用于太赫兹磁振子的工程反铁磁材料
- 批准号:
1810163 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Broadband terahertz metasurface lasers
宽带太赫兹超表面激光器
- 批准号:
1711892 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
钛基骨植入物表面电沉积镁氢涂层及其促成骨性能研究
- 批准号:52371195
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CLMP介导Connexin45-β-catenin复合体对先天性短肠综合征的致病机制研究
- 批准号:82370525
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人工局域表面等离激元高灵敏传感及其系统小型化的关键技术研究
- 批准号:62371132
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
- 批准号:42301138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用于稳定锌负极的界面层/电解液双向调控研究
- 批准号:52302289
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Opening Spaces and Places for the Inclusion of Indigenous Knowledge, Voice and Identity: Moving Indigenous People out of the Margins
为包容土著知识、声音和身份提供开放的空间和场所:使土著人民走出边缘
- 批准号:
477924 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Salary Programs