Collaborative Research: Cellular and Biomechanical Mechanisms of Rapid Stomatal Dynamics in Grasses
合作研究:草类快速气孔动力学的细胞和生物力学机制
基本信息
- 批准号:2327731
- 负责人:
- 金额:$ 25.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Stomata, which are microscopic pores on the surfaces of plants, are gateways that control photosynthesis in the crops that provide humanity with food and sustainable materials. This project investigates how stomata in grasses, which include staple food crops such as maize and wheat, are constructed with the capability to rapidly open and close to regulate photosynthesis and water transport in response to changing environmental conditions. The project will provide interdisciplinary graduate training and support discovery-based undergraduate research courses in molecular genetics, plant cell biology, computer vision, and biomechanics experimentation and modeling, expanding participation in these fields for diverse early-career scientists. The exciting biology of stomatal dynamics in plants and how understanding and engineering stomata can help address pressing societal challenges such as food security and climate change will be shared with K-12 students through a middle school summer camp and mentoring of high school students who will design and complete independent research projects. The outcomes of this work promise to help improve the efficiency with which plants capture carbon dioxide and convert it into food and useful materials such as fibers and wood.The four-celled stomatal complexes of grasses have been hypothesized to function via a “see-saw” mechanism by which the expansion of dumbbell-shaped guard cells is matched by deflation of the round subsidiary cells that flank the guard cells, enabling rapid adjustment of the size of the stomatal pore in response to environmental shifts. However, this hypothesis has not been rigorously tested, and our understanding of stomatal biomechanics and function in grasses is limited. This project combines molecular genetics, cell biology, computer vision, mechanical testing, and computer modeling of stomatal biomechanics to dissect the molecular, physiological, and cellular underpinnings of rapid stomatal dynamics in a model grass species, Brachypodium distachyon. The composition of the cell walls in guard and subsidiary cells will be manipulated in Brachypodium distachyon through advanced genetic engineering. The resulting changes will be examined with respect to stomatal function, biomechanical properties of the modified plants will be measured and modeled, and computer vision pipelines will be used to quantify changes in cell volumes and shapes. With these approaches, experimentally testable computational models of normal and altered stomatal complexes will help predict how stomatal function might be further optimized to enhance crop yields, water use efficiency, and carbon drawdown.This project is jointly funded by the NSF/BIO/MCB Cell Dynamics & Function Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气孔是植物表面上的微观孔,是控制农作物中光合作用的门户,可为人类提供食物和可持续材料。该项目研究了包括玉米和小麦等主食食品作物在内的草中的气孔,其构建的能力是迅速开放和接近调节光合作用和水的能力,以响应不断变化的环境条件。该项目将提供跨学科的研究生培训,并支持基于发现的分子遗传学,植物细胞生物学,计算机视觉和生物力学实验和建模的本科生研究课程,从而扩大了潜水员早期职业生涯的参与者的参与。植物中气孔动态的激动人心的生物学以及如何通过中学夏令营与K-12学生共享诸如粮食安全和气候变化之类的紧迫社会挑战,以及将设计和完成独立研究项目的高中学生的指导。 The outcomes of this work promise to help improve the efficiency with which plants capture carbon dioxide and convert it into food and useful materials such as fibers and wood.The four-celled stomatol complexes of grasses have been hypothesized to function via a “see-saw” mechanism by which the expansion of dumbbell-shaped guard cells is matched by deflation of the round Subsidiary cells that flank the guard cells, enabling rapid adjustment of the size of the响应环境变化的气孔孔。但是,该假设尚未经过严格检验,我们对草原生物力学和草中功能的理解受到限制。该项目结合了模型草种类中快速气震动力学的分子生物力学的分子遗传学,细胞生物学,计算机视觉,机械测试以及计算机建模,以剖析快速草种动力学的分子,生理和细胞基础。警卫和子公司细胞中细胞壁的组成将通过晚期基因工程在臂杆菌脱节中进行操纵。将根据气孔功能进行检查,将测量和建模改良工厂的生物力学特性,并将使用计算机视觉管道来量化细胞体积和形状的变化。借助这些方法,对正常和变化的烟气复合物的实验可测试的计算模型将有助于预测烟气功能如何进一步优化,以提高作物产量,用水效率和碳累积。该项目由NSF/BIO/MCB细胞动态计划和既定的研究(EPSCOR)的NSF/BIO/MCB细胞动态计划和既定范围(EPSCOR)的统计范围(the se thes)共同资助。通过基金会的智力优点和更广泛的影响评估标准通过评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deborah Petrik其他文献
Deborah Petrik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
CLSTN3β介导的内质网-线粒体协作调控白色脂肪细胞能量代谢改善肥胖的机制研究
- 批准号:82300980
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DENR协作 m6Am RNA修饰调控结直肠癌中巨噬细胞功能的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
DENR协作 m6Am RNA修饰调控结直肠癌中巨噬细胞功能的机制研究
- 批准号:82273214
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
沙门氏菌效应蛋白协作调控TRAF6泛素化介导细胞异噬时序调控的感染机制研究
- 批准号:31870122
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
细胞内吞路径中与膜重构现象相关的协作机制研究
- 批准号:21374074
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 25.21万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 25.21万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 25.21万 - 项目类别:
Standard Grant
Collaborative Research: Alpha-arrestins' impact on cellular physiology
合作研究:α-抑制蛋白对细胞生理学的影响
- 批准号:
2321625 - 财政年份:2023
- 资助金额:
$ 25.21万 - 项目类别:
Standard Grant
Collaborative Research: Cellular and Biomechanical Mechanisms of Rapid Stomatal Dynamics in Grasses
合作研究:草类快速气孔动力学的细胞和生物力学机制
- 批准号:
2327732 - 财政年份:2023
- 资助金额:
$ 25.21万 - 项目类别:
Standard Grant