QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks

QuSeC-TAQS:用于光学原子钟的新型量子算法

基本信息

  • 批准号:
    2326810
  • 负责人:
  • 金额:
    $ 175.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Optical clocks are the most accurate instruments ever realized by humankind. They have great potential for fundamental physics discovery as sensors, e.g., for low-frequency gravitational wave detection and dark matter searches. However, thus far optical clocks have generally used the same basic modality since the first atomic clocks were realized: uniform state preparation and interrogation of a sample of atoms. In contrast, the quantum information science (QIS) toolbox has developed to the point where single atoms in large arrays can be individually controlled, interrogated, and even entangled with other atoms. This project seeks to leverage QIS advances to develop new algorithms for the use of optical clocks as sensors. The team will train graduate students, undergraduate students, and postdocs in interdisciplinary research at the forefront of quantum metrology. All participants will be trained in advanced concepts regarding precision measurements, quantum sensing, and quantum algorithms. Through training in the context of cutting-edge research, this work will strengthen the quantum workforce.This project aims to realize new quantum algorithms to advance optical atomic clocks as quantum sensors for signals of interest including dark matter, gravitational waves, and as frequency and time references. Established quantum information science algorithms, such as quantum error correction, will serve as a jumping off point for the optical clock algorithms that this team will develop. This team will leverage ensembles of trapped neutral atoms and arrays of trapped ions, and develop and demonstrate new measurement protocols that maximize their sensitivity for a given atom number and sensing target, drawing inspiration from existing quantum computing algorithms. This project will advance the performance and capabilities of optical lattice clocks with multiple ensembles of neutral atoms, pioneering a new frontier in precision measurements. In parallel, this team will realize new ion traps with arrays of trapped clock ions, providing complementary approaches for algorithm development. Taken together with the development of novel clock algorithms and theoretical analyses of the expected signals from sensing targets such as various dark matter candidates, this effort will advance the sensing reach of optical clocks. The algorithms developed will also help ease the requirements for transportable optical clocks, for example by relaxing constraints on the optical clock laser system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光学时钟是人类有史以来最精确的仪器。它们具有基本物理发现作为传感器的巨大潜力,例如,用于低频引力波检测和暗物质搜索。但是,到目前为止,由于实现了第一个原子时钟以来,光学时钟通常已经使用了相同的基本方式:统一的状态制备和对原子样本的询问。相比之下,量子信息科学(QIS)工具箱已开发到可以单独控制,询问甚至与其他原子纠缠的大阵列中的单个原子。该项目旨在利用QIS的进步来开发新算法,用于使用光钟作为传感器。该团队将在量子计量学的最前沿培训研究生,本科生和博士后研究。所有参与者将接受有关精确测量,量子传感和量子算法的高级概念培训。通过在尖端研究的背景下进行培训,这项工作将加强量子劳动力。此项目旨在实现新的量子算法,以将光原子时钟作为量子传感器,以作为量子传感器,以供兴趣信号,包括暗物质,重力波,频率和时间参考。已建立的量子信息科学算法(例如量子误差校正)将成为该团队将开发的光学时钟算法的偏离点。该团队将利用被困的中性原子和被困离子阵列的合奏,并开发和演示新的测量协议,从而最大程度地提高了它们对给定的原子数和传感目标的敏感性,从而从现有的量子计算算法中汲取灵感。该项目将提高具有多个中性原子合奏的光学晶格时钟的性能和功能,从而在精确测量中开创了新的边界。同时,该团队将通过捕获的时钟离子阵列实现新的离子陷阱,从而为算法开发提供了互补的方法。结合了新的时钟算法的开发以及来自感应目标(例如各种暗物质候选者)的预期信号的理论分析,这项工作将提高光学时钟的感应范围。开发的算法还将有助于缓解可运输光学时钟的要求,例如,通过放松光时激光系统的限制。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响审查标准来评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reducing the Instability of an Optical Lattice Clock Using Multiple Atomic Ensembles
  • DOI:
    10.1103/physrevx.14.011006
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Xin Zheng;J. Dolde;S. Kolkowitz
  • 通讯作者:
    Xin Zheng;J. Dolde;S. Kolkowitz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Jayich其他文献

Andrew Jayich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Jayich', 18)}}的其他基金

CAREER: Rotational Cooling of Radioactive Molecules
职业:放射性分子的旋转冷却
  • 批准号:
    2146555
  • 财政年份:
    2022
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Continuing Grant
Developing a Radium Toolset for New Physics
开发新物理学的镭工具集
  • 批准号:
    1912665
  • 财政年份:
    2019
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Standard Grant

相似国自然基金

塔里木北缘库鲁克塔格地区志留—泥盆纪变质—变形作用及其构造意义
  • 批准号:
    42372240
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
热液流体对白云岩孔隙的差异改造:以塔北南斜坡上震旦统奇格布拉克组为例
  • 批准号:
    42272154
  • 批准年份:
    2022
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
库鲁克塔格地区下寒武统西大山组黑色页岩的钼同位素特征及其对古海洋环境的指示意义
  • 批准号:
    41903018
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
新疆库鲁克塔格地区古元古代深熔混合岩变质作用P-T-t轨迹及其对碰撞造山过程的约束
  • 批准号:
    41762015
  • 批准年份:
    2017
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目
北阿尔金地区阿克塔什塔格杂岩的岩石组合、形成时代及相关构造-岩浆事件
  • 批准号:
    41672186
  • 批准年份:
    2016
  • 资助金额:
    95.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了