Fused Filament Fabrication of Porous PEEK and PEKK Spinal Cages: Which 3D Printing Conditions Control Static and Fatigue Strength?

多孔 PEEK 和 PEKK 脊柱笼的熔丝制造:哪种 3D 打印条件可以控制静电强度和疲劳强度?

基本信息

  • 批准号:
    2326537
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Non-Technical Abstract:When an individual complains of back pain, it is an indication that they may be experiencing soreness and discomfort in their spine, typically attributed to herniated discs. Herniated discs occur when the cushion-like structures in the spine bulge or slip out of place due to ruptures caused by sudden physical activities, resulting in the compression of nearby nerves. To repair herniated discs and reduce back pain, spinal implants are used to facilitate fusion between two vertebrae. However, for such implants to function effectively within the body, it is crucial for them to possess both strength and the ability to have nearby bone and tissue grow into the implant. Achieving this biological fixation serves as an indicator of successful healing while ensuring proper support of the spine. In this study, the researchers will utilize a specific additive manufacturing method called Fused Filament Fabrication (FFF). The technique involves the layer-by-layer deposition of melted polymer to construct a complete structure. Two polymers, polyetheretherketone (PEEK) and polyetherketoneketone (PEKK) will be used in this study based on their historic use in medical devices. Due to the significance of achieving a strong structure, the researchers will optimize the manufacturing process by systematically varying key parameters that have the potential to enhance the strength of the implant structures fabricated from PEEK and PEKK polymers. The ability to create such an implant using FFF printing technology not only contributes to a reduction in manufacturing costs, leading to more affordable healthcare, but also enhances the overall quality of life for patients.Technical Abstract:The purpose of this research project is to establish the correlation between the structural and mechanical properties of lumber spine cages made from Fused Filament Fabricated (FFF) polyetheretherketone (PEEK) and polyetherketoneketone (PEKK). The project ultimately seeks to contribute to the progression of knowledge of additively manufactured (AM) Intervertebral Body Fusion Devices (IBFDs) specifically used in treating intractable back pain. The research objectives that would help in achieving the overall goal include optimization of the FFF process for lumbar spine cages and assessing the performance of the printed cages. The optimal build parameters (speed and temperature) will be determined by a comprehensive material characterization process involving microCT, optical microscopy, calorimetry, mechanical testing, and Scanning Electron Microscopy (SEM). The established optimized build parameters will then be used to print both solid and porous lumbar spine cages. The printed cages would be assessed for durability under various loading conditions per ASTM F2077 (Test Methods for Intervertebral Body Fusion Devices) to establish the structure-properties relationship. Finite Element Analysis (FEA) and Monte Carlo simulations would be used to evaluate the iterative performance of the spine cages. The findings have the potential to contribute to the development of consistent and reliable AM spine cages utilized in surgical interventions, reducing the risk of device failure, and improving patient outcomes. The use of AM can increase accessibility to medical devices due to cost-effective and easily produced medical devices and ultimately contribute to affordable healthcare.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:当一个人抱怨背痛时,这表明他们的脊柱可能出现酸痛和不适,通常归因于椎间盘突出。当脊柱中的垫状结构由于突然的身体活动导致破裂而凸出或滑出位置,导致附近神经受压时,就会出现椎间盘突出。为了修复椎间盘突出并减轻背痛,使用脊柱植入物来促进两块椎骨之间的融合。然而,为了使此类植入物在体内有效发挥作用,它们必须同时具备强度和让附近的骨骼和组织生长到植入物中的能力。实现这种生物固定是成功愈合的指标,同时确保脊柱得到适当的支撑。在这项研究中,研究人员将利用一种称为熔丝制造(FFF)的特定增材制造方法。该技术涉及熔化聚合物的逐层沉积以构建完整的结构。根据聚醚醚酮 (PEEK) 和聚醚酮酮 (PEKK) 两种聚合物在医疗器械中的历史用途,本研究将使用这两种聚合物。由于实现坚固结构的重要性,研究人员将通过系统地改变关键参数来优化制造工艺,这些参数有可能增强由 PEEK 和 PEKK 聚合物制造的植入物结构的强度。使用 FFF 打印技术制造此类植入物的能力不仅有助于降低制造成本,带来更实惠的医疗保健,而且还能提高患者的整体生活质量。 技术摘要:该研究项目的目的是建立由熔丝制造 (FFF) 聚醚醚酮 (PEEK) 和聚醚酮酮 (PEKK) 制成的木材脊柱笼的结构和机械性能之间的相关性。该项目的最终目标是促进专门用于治疗顽固性背痛的增材制造 (AM) 椎间融合装置 (IBFD) 的知识进步。有助于实现总体目标的研究目标包括优化腰椎融合器的 FFF 工艺以及评估印刷融合器的性能。最佳构建参数(速度和温度)将通过涉及 microCT、光学显微镜、量热法、机械测试和扫描电子显微镜 (SEM) 的综合材料表征过程来确定。然后,建立的优化构建参数将用于打印实心和多孔腰椎笼。将根据 ASTM F2077(椎间融合装置测试方法)评估印刷笼在各种负载条件下的耐用性,以建立结构-性能关系。有限元分析(FEA)和蒙特卡罗模拟将用于评估脊柱笼的迭代性能。这些发现有可能有助于开发用于外科手术的一致且可靠的增材制造脊柱笼,降低设备故障的风险,并改善患者的治疗效果。由于具有成本效益且易于生产的医疗设备,增材制造的使用可以增加医疗设备的可及性,并最终有助于负担得起的医疗保健。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Kurtz其他文献

Steven Kurtz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

INA基因高甲基化释放游离态tubulin促进微管聚合在结直肠癌早期进展中作用及机制研究
  • 批准号:
    31900505
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
RVFV毒力因子NSs形成filament结构及介导毒性效应的机理研究
  • 批准号:
    31900144
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
中性束强流离子源弧放电控制新技术研究
  • 批准号:
    11675074
  • 批准年份:
    2016
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
纵向多灯丝电子帘加速器的束流成形与引出研究
  • 批准号:
    11505271
  • 批准年份:
    2015
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ERI: Fused Filament Fabrication of Thermoplastic-Composite Molds Embedded with Heating Wires for Energy-Efficient Production of Thermoset Composites
ERI:嵌入加热丝的热塑性复合材料模具的熔丝制造,用于热固性复合材料的节能生产
  • 批准号:
    2301925
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Design and manufacturing of a multinozzle device for Fused Filament Fabrication (FFF)
用于熔丝制造 (FFF) 的多喷嘴装置的设计和制造
  • 批准号:
    572404-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    University Undergraduate Student Research Awards
Fused filament fabrication (FFF) for oil sands applications
适用于油砂应用的熔丝制造 (FFF)
  • 批准号:
    537171-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative Research and Development Grants
Stochastic Structural Optimization for Fused Filament Fabrication Manufactured Components
熔丝制造制造部件的随机结构优化
  • 批准号:
    575459-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Fused filament fabrication (FFF) for oil sands applications
适用于油砂应用的熔丝制造 (FFF)
  • 批准号:
    537171-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了