QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
基本信息
- 批准号:2326528
- 负责人:
- 金额:$ 99.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to accelerate the development and adoption of quantum sensing platforms to drive technologically-relevant advances in magnetic materials, including near-term materials needed to address critical clean energy challenges, such as the need for miniature and efficient power converters in electric vehicles. At a more fundamental level, this project will also accelerate progress in understanding cutting edge ultrathin magnetic materials. The project brings together an interdisciplinary team of experimental physicists, theorists, and engineers to develop a magnetic quantum sensing platform and bring it from proof-of-concept to practical application. The proposed quantum sensing approach is based on the electron spins of defects in diamond (the nitrogen-vacancy defect). The quantum state of the spins will be used to detect magnetic waves known as magnons in novel magnetic materials, yielding information about a material’s magnetic properties and dynamics with high spatial and time resolution. On the basic science of quantum sensing, this team will use testbed systems and theory to develop new modalities of magnon quantum sensing. These new modalities will be developed with an eye towards solving outstanding problems in magnetic materials. In order to accelerate progress, the team will engineer Quantum-Enabled Magnon Sensing (QuEMS) devices based on micro/nano-electromechanical system (MEMS/NEMS) expertise to allow high throughput application of these quantum sensing techniques with diverse materials. The team will apply the QuEMS platform to two currently relevant magnetic materials systems: atomically-thin magnets and nanocrystalline soft magnetic (NSM) alloys. Atomically-thin magnetic materials are interesting from a fundamental perspective, as their two-dimensional nature results in novel magnetic properties for individual layers, and complex interactions when these layers are stacked. NSM alloys are an emerging class of magnetic materials with near-term application due to their extremely low energy loss in devices such as transformers and power converters. These two materials classes both exhibit phenomena on fast time scales and nanometer length scales, making the quantum sensing platform in this prject a powerful tool for understanding and developing these materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是加速量子传感平台的开发和采用,以推动与技术相关的磁性材料进步,包括应对关键清洁能源挑战所需的近期材料,例如需要在电动汽车中进行微型和有效的电力转换器。在更基本的水平上,该项目还将加速了解尖端超薄磁性材料的进展。该项目汇集了一个实验物理学家,理论家和工程师的跨学科团队,以开发磁性量子灵敏度平台,并将其从概念验证验证到实际应用。所提出的量子灵敏度方法基于钻石缺陷的电子自旋(氮呈缺损)。旋转的量子状态将用于检测新型磁性材料中称为磁铁的磁性波,从而产生有关材料的磁性特性和具有高空间和时间分辨率的动力学的信息。关于量子灵敏度的基础科学,该团队将使用经过测试的系统和理论来发展镁量子灵敏度的新方式。这些新的方式将开发出来,以解决磁性材料中的出色问题。为了加速进步,该团队将基于微/纳米/纳米机电系统(MEMS/NEMS)专业知识来设计基于量子量子的磁通传感(QUEMS)设备,以使这些量子传感技术与潜水员材料相高。该团队将将QUEMS平台应用于当前相关的两个相关磁性材料系统:原子上薄的磁铁和纳米晶体软磁(NSM)合金。从基本的角度来看,原子上薄的磁性材料很有趣,因为它们的二维性质会导致单个层的新磁性,并且在堆叠这些层时复杂的相互作用。 NSM合金是一类新兴的磁性材料,由于它们在变压器和电源转换器等设备中的能量损失极低,因此具有近期应用。这两种材料类都在快速时间尺度和纳米长度尺度上暴露了现象,这使得该计划中的量子灵敏度平台成为理解和开发这些材料的强大工具。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准通过评估来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesse Berezovsky其他文献
Spatial imaging of magnetically patterned nuclear spins in GaAs
GaAs 中磁图案核自旋的空间成像
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
J. Stephens;Roland Kawakami;Jesse Berezovsky;M. Hanson;D. Shepherd;A. Gossard;D. Awschalom - 通讯作者:
D. Awschalom
Jesse Berezovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
塔里木北缘库鲁克塔格地区志留—泥盆纪变质—变形作用及其构造意义
- 批准号:42372240
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
热液流体对白云岩孔隙的差异改造:以塔北南斜坡上震旦统奇格布拉克组为例
- 批准号:42272154
- 批准年份:2022
- 资助金额:57 万元
- 项目类别:面上项目
库鲁克塔格地区下寒武统西大山组黑色页岩的钼同位素特征及其对古海洋环境的指示意义
- 批准号:41903018
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
新疆库鲁克塔格地区古元古代深熔混合岩变质作用P-T-t轨迹及其对碰撞造山过程的约束
- 批准号:41762015
- 批准年份:2017
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
北阿尔金地区阿克塔什塔格杂岩的岩石组合、形成时代及相关构造-岩浆事件
- 批准号:41672186
- 批准年份:2016
- 资助金额:95.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 99.57万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 99.57万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 99.57万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 99.57万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 99.57万 - 项目类别:
Continuing Grant