Self-assembled DNA crystals as scaffolds for macromolecules

自组装 DNA 晶体作为大分子支架

基本信息

  • 批准号:
    2324944
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

PART 1: NON-TECHNICAL SUMMARY Nature uses self-assembly in order to organize molecules into functional materials, with biological cells being a prime example of the great potential in this approach. DNA and RNA are two of the most promising molecules for constructing tailored self-assembling systems because they encode information in a programmable way, so many independent strands can be designed that come together in a predictable manner. The molecular properties (e.g. the dimensions, geometry, and rigidity) of these nucleic acids are also well known, and they can form branched junctions that allow them to assemble in 2D and 3D space. One key goal of nucleic acid-based nanotechnology is to build 3D crystals with programmable void spaces to host various guest molecules. This project aims to show, for the first time, that molecules like RNA or proteins can be specifically positioned in these crystals, by tethering them to strands that make up the lattice. The first goal is to incorporate RNA into the crystals, both to see how it changes the assembly of the lattice, but also to solve the structure of small, unknown RNA motifs like aptamers. In the second goal, proteins will be attached to the crystals, not to solve their structure, but rather to create a dense 3D array of these molecules (e.g. for catalytic reasons, by incorporating enzymes). Finally, the third goal of this project is to create nano-crystals (which are roughly a billion-fold smaller than the crystals typically obtained), laden with either small interfering RNA (siRNA) or functional proteins. These crystals can be used to effectively deliver these cargoes into cells, given the extremely high density they can carry. Taken together, the goals in this proposal will create a new system of 3D scaffolds for solving RNA structures, attaching proteins to make catalytic materials, and more efficiently delivering important functional molecules into cells. The project will also have significant societal and educational impact by developing an online curriculum and teacher training for K-12 education and a new self-assembly online game for exploring how these systems work. This program will engage undergraduate, graduate, and underrepresented minority students to gain knowledge and pursue research in the science, technology, engineering, and math (STEM) fields, and help develop a new course for teaching nanotechnology to a broad range of students.PART 2: TECHNICAL SUMMARY The goal of this project is to use self-assembled, 3D DNA crystals as functional macromolecular scaffolds that can immobilize guest molecules, such as RNA and proteins. These DNA crystals are programmable in both their lattice geometry and the size of the pores and channels that comprise them, and guest species can be site-specifically positioned by tethering them to the strands that assemble to form the crystal (either covalently or via supramolecular effects). This project will create crystals that incorporate RNA as well as DNA, and determine the effects on crystal symmetry of this change. In addition, the cavities of the crystal will be used to host both RNA and DNA aptamers, and to solve their structure (including ones that are currently unknown) using X-ray crystallography. Small aptamers in particular are difficult to solve in any other way, and thus this method will facilitate the determination of more such structures. Another goal of the project will be to create a high density of functions proteins (both model systems like GFP, and enzymes like horseradish peroxidase), by attaching them to molecules that site-specifically bind the minor groove of DNA. Although the proteins will not be tethered rigidly enough to solve their structure using crystallography, the lattices can serve as catalytic materials, as affinity scaffolds for protein purification, or ways to protect the proteins from degradation. The third key goal of this project will be to scale down the size of the crystals to 100-200 nm in size (compared with traditional such crystals, which are hundreds of micrometers). These nano-crystals will be used to deliver functional cargoes (such as siRNA or functional proteins) to the interior of cells, and the regular lattice will provide an extremely high loading capacity, e.g. ~1,000 molecules for a crystal approximately 100 nm in diameter. Taken together, the work will: (1) create a new set of scaffolds for determining RNA and DNA aptamer structure; (2) enable functional materials with controlled attachment of proteins in 3D space; and (3) design a new category of nanoparticles with extremely high loading capacity of proteins or siRNA for effective delivery to cells.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分:非技术摘要性质使用自组装来将分子组织成功能材料,而生物细胞是这种方法中巨大潜力的一个主要例子。 DNA和RNA是构建量身定制的自组装系统的两个最有前途的分子,因为它们以可编程方式编码信息,因此可以设计许多独立的链,以可预测的方式设计在一起。这些核酸的分子特性(例如,尺寸,几何和刚度)也是众所周知的,它们可以形成分支连接,使它们可以在2D和3D空间中组装。基于核酸的纳米技术的一个关键目标是建立具有可编程空间的3D晶体,以容纳各种客体分子。该项目的目的是首次表明RNA或蛋白质之类的分子可以通过将它们束缚在构成晶格的链中,以特异性位于这些晶体中。第一个目标是将RNA掺入晶体中,既要查看它如何改变晶格的组装,又要求解小型,未知的RNA图案(如适体)的结构。在第二个目标中,蛋白质将连接到晶体上,而不是解决它们的结构,而是要创建这些分子的致密3D阵列(例如,出于催化原因,通过掺入酶)。最后,该项目的第三个目标是创建纳米晶体(大约比通常获得的晶体小的十亿倍),并用小的干扰RNA(siRNA)或功能性蛋白质。考虑到它们可以携带的极高密度,这些晶体可用于有效地将这些货物输送到细胞中。综上所述,该提案中的目标将创建一个新的3D支架系统,用于求解RNA结构,连接蛋白质以制造催化材料,并更有效地将重要的功能分子传递到细胞中。该项目还将通过为K-12教育开发在线课程和教师培训以及新的自我组装在线游戏,以探索这些系统的工作方式,从而产生重大的社会和教育影响。该计划将吸引本科,毕业和代表性不足的少数族裔学生,以获取知识并从事科学,技术,工程和数学(STEM)领域的研究,并帮助开发一门新课程,以向纳米技术教授纳米技术的新课程。第2部分:技术摘要该项目的目标是使用自我组成的仪式,供您使用的供应型DNA Crymob sumpimize the dnd dna crystal sigalimize him cymob sack of toctimim ins of to hompimize the dn.分子,例如RNA和蛋白质。这些DNA晶体在其晶格几何形状和构成它们的毛孔和通道的大小中都可以编程,并且可以通过将它们链接到组装以形成晶体的链(共价或通过超分子效应)来特定位置定位。该项目将创建结合RNA和DNA的晶体,并确定对这种变化晶体对称性的影响。此外,晶体的空腔将用于托管RNA和DNA适体,并使用X射线晶体学解决其结构(包括目前未知的结构)。特别是小型的适体以任何其他方式都难以解决,因此该方法将有助于确定更多此类结构。该项目的另一个目标是通过将它们连接到位点特异性结合DNA的次要凹槽的分子上,从而创建高密度的功能蛋白(GFP等模型系统和辣根过氧化物酶等酶)。尽管蛋白质将不足以用晶体学解决其结构,但晶格可以用作催化材料,作为蛋白质纯化的亲和力支架或保护蛋白质免受降解的方法。该项目的第三个关键目标是将晶体的尺寸缩小到100-200 nm的大小(与传统的晶体相比,这是数百微米)。这些纳米结晶将用于将功能性货物(例如siRNA或功能蛋白)传递到细胞内部,并且常规晶格将提供极高的负载能力,例如直径约100 nm的晶体分子〜1,000个分子。综上所述,工作将:(1)创建一组新的脚手架来确定RNA和DNA适体结构; (2)在3D空间中启用具有控制蛋白质附着的功能材料; (3)设计具有蛋白质或siRNA的高负载能力以有效传递到细胞的新类别的纳米颗粒。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的评估标准来通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hao Yan其他文献

Two-agent vehicle scheduling problem on a line-shaped network
线形网络上的二智能体车辆调度问题
Multi-scale analysis of the energy metabolic processes in the Beijing-Tianjin-Hebei (Jing-Jin-Ji) urban agglomeration
京津冀城市群能量代谢过程多尺度分析
  • DOI:
    10.1016/j.ecolmodel.2017.12.012
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Hao Yan;Zhang Menghui;Zhang Yan;Fu Chenling;Lu Zhongming
  • 通讯作者:
    Lu Zhongming
ROS-dependent DNA damage contributes to crizotinib-induced hepatotoxicity via the apoptotic pathway
ROS 依赖性 DNA 损伤通过细胞凋亡途径导致克唑替尼诱导的肝毒性
  • DOI:
    10.1016/j.taap.2019.114768
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Hao Yan;Jiangxia Du;Xueqin Chen;Bo Yang;Qiaojun He;Xiaochun Yang;Peihua Luo
  • 通讯作者:
    Peihua Luo
A systematic method of evaluation of the Chinese natural gas supply security
中国天然气供应安全系统评价方法
  • DOI:
    10.1016/j.apenergy.2015.12.120
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Lu Weiwei;Su Meirong;Fath B. Brian;Zhang Mingqi;Hao Yan
  • 通讯作者:
    Hao Yan
Comparison of aspherical wavefront measurement by null compensator and computer-generated holograms
通过零位补偿器进行非球面波前测量与计算机生成的全息图的比较
  • DOI:
    10.1117/12.2580418
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baojian Ji;Hao Yan;Qikai Shi;Shenglin Wen
  • 通讯作者:
    Shenglin Wen

Hao Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hao Yan', 18)}}的其他基金

Collaborative Research: Multi-Agent Adaptive Data Collection for Automated Post-Disaster Rapid Damage Assessment
协作研究:用于灾后自动化快速损害评估的多智能体自适应数据收集
  • 批准号:
    2316654
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SemiSynBio-III: DNA Templated Chiral Metamaterials for Information Storage
SemiSynBio-III:用于信息存储的 DNA 模板手性超材料
  • 批准号:
    2227650
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Rational design of self-assembled, three-dimensional DNA crystals
自组装三维DNA晶体的合理设计
  • 批准号:
    2004250
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SemiSynBio-II: DNA-Based Memory for High-Density Information Storage and Molecular Cryptography with Fast Readout Methods
SemiSynBio-II:基于 DNA 的存储器,用于高密度信息存储和具有快速读出方法的分子密码学
  • 批准号:
    2027215
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Adaptive and Rapid Spatial-Temporal Threat Detection over Networks
ATD:协作研究:网络上的自适应快速时空威胁检测
  • 批准号:
    1830363
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Student and Postdoc Travel Support for International Workshop on Future trends in DNA-based nanotechnology
基于 DNA 的纳米技术未来趋势国际研讨会的学生和博士后旅行支持
  • 批准号:
    1707491
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Bilateral NSF/BIO-BBSRC: Synthetic DNA Nanopores for Selective Transmembrane Transport
双边 NSF/BIO-BBSRC:用于选择性跨膜运输的合成 DNA 纳米孔
  • 批准号:
    1644745
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Top-down algorithmic design of structured nucleic acid assemblies
AF:中:协作研究:结构化核酸组装体的自上而下的算法设计
  • 批准号:
    1563799
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Algorithmic design principles for programmed DNA nanocages
EAGER:协作研究:编程 DNA 纳米笼的算法设计原理
  • 批准号:
    1547962
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Self-assembling Quasi-crystals from DNA Tiles
DNA 瓦片自组装准晶体
  • 批准号:
    1360635
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

BAG6协调受损染色体上DNA修复因子组装的分子机理研究
  • 批准号:
    82372767
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DNA折纸术指导的等离激元螺旋超组装与手性光学性质研究
  • 批准号:
    22302227
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于可编程核酸酶Argonaute的DNA高效合成及组装技术研究
  • 批准号:
    32301221
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
聚合酶链式组装法构建双链DNA片段的关键调控序列特征解析与智能拆分研究
  • 批准号:
    22378307
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于DNA自组装构建细胞水平磁场检测探针:封闭等离子共振纳米腔调控金刚石NV色心
  • 批准号:
    22374112
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Next Generation Infectious Disease Diagnostics: Microfluidic-Free Gigapixel PCR with Self-Assembled Partitioning
下一代传染病诊断:具有自组装分区的无微流控千兆像素 PCR
  • 批准号:
    10682295
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
  • 批准号:
    2240309
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Self-assembled DNA elastic networks for measuring membrane tension in live cells
用于测量活细胞膜张力的自组装 DNA 弹性网络
  • 批准号:
    10405097
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Self-assembled DNA elastic networks for measuring membrane tension in live cells
用于测量活细胞膜张力的自组装 DNA 弹性网络
  • 批准号:
    10196486
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Rational design of self-assembled, three-dimensional DNA crystals
自组装三维DNA晶体的合理设计
  • 批准号:
    2004250
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了