DMREF: Design of fast energy storage pseudocapacitive materials

DMREF:快速储能赝电容材料的设计

基本信息

  • 批准号:
    2324326
  • 负责人:
  • 金额:
    $ 192.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

Non-technical Description: Electrical energy storage is essential to the energy transition and to the reduction of greenhouse gas emissions. While electricity storage in batteries has made significant progresses in recent years in terms of the amount of energy stored, one major challenge is the long time required for charging. Capacitors represent another class of electrical energy storage devices that can be charged very quickly. Such capacitive energy storage is an important technology for numerous applications where electrical energy needs to be stored and/or released quickly. However, current devices and materials can store only a limited amount of energy. The realization of capacitors that could store a large amount of electrical energy could have an enormous impact on energy storage for the electricity grid, for electric mobility solutions, and for consumer electronics. The project aims at designing novel capacitive materials that can greatly increase the energy storage of electrochemical capacitors with fast charging and discharging. The project’s societal impact lies in its contributions towards the decarbonization of the transportation sector which accounts for 29% of all greenhouse gas emission in the United States today. The scientific approach will be based on a material design loop including experiments and modeling in order to define the features of capacitive materials enabling high storage ability, in the spirit of the Materials Genome initiative and on a large computational screening of prospective materials to obtain candidates that will be tested experimentally. The project will also serve as a platform for the training of undergraduate and graduate students in topics related to energy storage and modeling. Advantage will be taken of the existing infrastructure at UCLA and Stanford University to attract talented, ethnically and culturally diverse undergraduate student populations to work on cutting-edge research. Technical Description: The aim of this research program is to tightly combine experimental and computational methods to identify a new generation of electrochemical energy storage materials based on pseudocapacitance, defined as a charge storage approach which uses fast and reversible surface or near surface redox reactions, and to construct a prototype device integrating the energy storage materials. While the underlying principles of pseudocapacitance are understood, there is currently no ability to predict or design materials that display pseudocapacitive behavior. A double design loop is proposed. The first one will operate at the atomic scale and will combine first principle electronic structure calculations with synthesis and testing. It will provide thermodynamics and kinetic information to the second level of design that will involve optimization of energy storage device configurations, combining continuum modeling and experimental synthesis and characterization. From this approach, an energy storage device will be demonstrated based on the developed pseudocapacitive materials. The project will bring fundamental understanding of the factors governing pseudocapacitive material performance and provide practical guidelines for the design of high performance energy storage materials and devices. The research will also have significant scientific merit by establishing the interrelationships among material structure, charge storage dynamics, and charge transfer processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:电能存储对于能量过渡和减少温室气体排放至关重要。尽管近年来,在存储的能源量方面,电池中的电气存储取得了重大进展,但一个主要挑战是充电所需的长期挑战。电容器代表了另一类的电源存储设备,可以很快地充电。对于众多应用,这种电容能量存储是一项重要技术,需要迅速存储和/或释放电能。但是,当前的设备和材料只能存储有限的能量。可以实现可以存储大量电能的电容器,可以增强对电网的能量存储,电动移动解决方案以及消费电子产品的影响。该项目旨在设计新型的电容材料,这些材料可以大大增加电容器的能源,并通过快速充电和放电。该项目的社会影响在于它对运输部门脱碳的贡献,该运输业今天占美国所有温室气体排放量的29%。科学方法将基于材料设计循环,包括实验和建模,以根据材料基因组倡议的精神和对前瞻性材料的大量计算筛选,以获取将经过实验测试的候选者的大量计算筛选。该项目还将作为培训与能源和建模有关的主题的本科生和研究生的平台。加州大学洛杉矶分校和斯坦福大学现有基础设施的优势将吸引,种族和文化上多样化的本科生群体,从事尖端研究。技术描述:该研究计划的目的是紧密结合实验和计算方法,以基于伪电容性的新一代电化学储能材料,定义为使用的电荷存储方法,该方法使用快速且可逆的表面或靠近表面的反应反应,并构造集成储能材料的原型设备。虽然了解伪电容的基本原则,但目前尚无预测或设计显示假能映射行为的材料。提出了双重设计循环。第一个将以原子量表运行,并将第一个主要电子结构计算与合成和测试相结合。它将为第二级设计提供热力学和动力学信息,其中涉及储能设备配置,结合连续建模和实验合成和表征。通过这种方法,将根据开发的假能材料来证明一种储能设备。该项目将对管理假能材料性能的因素有基本的了解,并为设计高性能存储材料和设备的设计提供实用的指南。这项研究还将通过在材料结构,电荷存储动态和电荷转移过程之间建立相互关系来具有重要的科学价值。该奖项反映了NSF的法定使命,并通过使用基金会的知识分子优点和更广泛的审查标准评估来诚实地获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philippe Sautet其他文献

Key Role of Anionic Doping for H2 Production from Formic Acid onPd(111)
阴离子掺杂在 Pd(111) 上甲酸制氢中的关键作用
  • DOI:
    10.1021/acscatal.6b03544
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Pei Wang;Stephan N. Steinmann;Gang Fu;Carine Michel;Philippe Sautet
  • 通讯作者:
    Philippe Sautet
Determination of the crotonaldehyde structures on Pt and PtSn surface alloys from a combined experimental and theoretical study
  • DOI:
    10.1016/j.cplett.2006.10.123
  • 发表时间:
    2006-12-29
  • 期刊:
  • 影响因子:
  • 作者:
    Jan Haubrich;David Loffreda;Françoise Delbecq;Yvette Jugnet;Philippe Sautet;Aleksander Krupski;Conrad Becker;Klaus Wandelt
  • 通讯作者:
    Klaus Wandelt
First Principles Study of Aluminum Doped Polycrystalline Silicon as a Potential Anode Candidate in Li‐ion Batteries
铝掺杂多晶硅作为锂离子电池潜在负极候选物的第一性原理研究
  • DOI:
    10.1002/aenm.202400924
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    27.8
  • 作者:
    Sree Harsha Bhimineni;Shu;Casey Cornwell;Yantao Xia;Sarah H. Tolbert;Jian Luo;Philippe Sautet
  • 通讯作者:
    Philippe Sautet
Formation of acrylates from ethylene and COsub2/sub on Ni complexes: A mechanistic viewpoint from a hybrid DFT approach
由乙烯和 CO 形成丙烯酸酯
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Wenping Guo;Carine Michel;Renate Schwiedernoch;Raphael Wischert;Xin Xu;Philippe Sautet
  • 通讯作者:
    Philippe Sautet
H and CO Co-Induced Roughening of Cu Surface in CO2 Electroreduction Conditions.
CO2 电还原条件下 H 和 CO 共同诱导铜表面粗糙化。
  • DOI:
    10.1021/jacs.4c03515
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Zisheng Zhang;Winston Gee;Philippe Sautet;A. Alexandrova
  • 通讯作者:
    A. Alexandrova

Philippe Sautet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philippe Sautet', 18)}}的其他基金

CDS&E: Machine learning enabled modelling of dynamic nanoparticle catalysts
CDS
  • 批准号:
    2152767
  • 财政年份:
    2022
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Standard Grant
Self-limited etching for atomic scale surface engineering of metals: understanding and design
金属原子级表面工程的自限蚀刻:理解和设计
  • 批准号:
    2212981
  • 财政年份:
    2022
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Standard Grant
NSF-DFG Echem: CAS: Electrochemical Pyrrolidone Synthesis: An Integrated Experimental and Theoretical Investigation of the Electrochemical Amination of Levulinic Acid (ElectroPyr)
NSF-DFG Echem:CAS:电化学吡咯烷酮合成:乙酰丙酸 (ElectroPyr) 电化学胺化的综合实验和理论研究
  • 批准号:
    2140374
  • 财政年份:
    2022
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Standard Grant
Modeling electrocatalysts in operating conditions: Surface restructuring and catalytic activity
模拟运行条件下的电催化剂:表面重组和催化活性
  • 批准号:
    2103116
  • 财政年份:
    2021
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Standard Grant
Understanding the restructuring of model metal catalysts in reactant gases
了解反应气体中模型金属催化剂的重组
  • 批准号:
    1800601
  • 财政年份:
    2018
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Standard Grant

相似国自然基金

面向FAST的宽带高灵敏度相控阵馈源系统设计关键技术研究
  • 批准号:
    U1931129
  • 批准年份:
    2019
  • 资助金额:
    54.0 万元
  • 项目类别:
    联合基金项目
面向FAST射电望远镜数据预处理和压缩传输研究
  • 批准号:
    U1831118
  • 批准年份:
    2018
  • 资助金额:
    42.0 万元
  • 项目类别:
    联合基金项目
FAST馈源支撑系统大型混联定位机构的精度设计与补偿
  • 批准号:
    11203048
  • 批准年份:
    2012
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
FAST馈源支撑系统阻尼问题研究
  • 批准号:
    11103046
  • 批准年份:
    2011
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
巨型射电天文望远镜(FAST)总体设计与关键技术研究
  • 批准号:
    10433020
  • 批准年份:
    2004
  • 资助金额:
    300.0 万元
  • 项目类别:
    重点项目

相似海外基金

Data Management Core
数据管理核心
  • 批准号:
    10682165
  • 财政年份:
    2023
  • 资助金额:
    $ 192.56万
  • 项目类别:
Fast-kinetics approaches to define direct gene-regulatory functions of MYB in leukemia
快速动力学方法定义 MYB 在白血病中的直接基因调控功能
  • 批准号:
    10644259
  • 财政年份:
    2023
  • 资助金额:
    $ 192.56万
  • 项目类别:
Fast Freezing Processes in Tissues
组织中的快速冷冻过程
  • 批准号:
    10798699
  • 财政年份:
    2023
  • 资助金额:
    $ 192.56万
  • 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
  • 批准号:
    10760164
  • 财政年份:
    2023
  • 资助金额:
    $ 192.56万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 192.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了