DMREF/Collaborative Research: Accelerated Discovery of Sustainable Bioplastics: Automated, Tunable, Integrated Design, Processing and Modeling
DMREF/合作研究:加速可持续生物塑料的发现:自动化、可调、集成设计、加工和建模
基本信息
- 批准号:2323978
- 负责人:
- 金额:$ 79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Despite years of recycling efforts, only about 10 percent of polymer waste ends up in recycling facilities, with the majority still accumulating in landfills or oceans, emphasizing the need for eco-friendly materials combining renewable sourcing, sustainable processing, and biodegradability. Thermoformable biopolymer assemblies or bioplastics are eco-friendly materials that could be sourced from biological cell or tissue (biomatter), without expensive and wasteful extraction and pre-processing. The most significant limitation in the ability to design these bioplastics is a poor understanding of the fundamental mechanisms controlling the transformation of biomatter to cohesive bioplastics. This Designing Materials to Revolutionize and Engineer our Future (DMREF) grant supports research that will combine high-throughput data capture, multiscale modeling, and machine learning to understand the molecular and chemical mechanisms controlling the transition from organism to bioplastic during processing. With that understanding, design pathways will be developed to tailor the processing and composition of the initial structure to control the macroscopic properties, and degradation that occurs during and after use. The broad impact of this work will be a new class of entirely biodegradable plastics with performance comparable to commodity plastics but manufactured sustainably. To support the next-generation sustainable materials workforce, the grant will also support mentoring of graduate and undergraduate students, active engagement in outreach activities, and efforts to enhance diversity and inclusivity in STEM.An emerging transformative concept in developing eco-friendly materials is to use biological matter without any extraction process to create bioplastics. Significant challenges remain in understanding how mixtures of biopolymers transform into thermoformable bioplastics and how the processing parameters control structure and properties. To provide key insights, this project will use high throughput methods to measure processing, spectroscopic, and morphology features and apply machine learning methods to identify the key descriptors controlling the transformation from organism to plastic. Molecular dynamics simulations and high-fidelity experiments will augment the understanding of the reactions towards bioplastic formation as well as biodegradation. Detailed structure and property measurements will be used to validate a finite element analysis tool that will enable the identification of the optimal structure to achieve properties comparable to commercial plastics using high throughput methods. Spirulina, an abundant photosynthetic microorganism that has been demonstrated to produce bioplastics when processed with heat and pressure will serve as a proof-of-concept system. The fundamental contribution of this project will be a design approach that accounts for the complexities of the transition of raw biomatter to bioplastics, exemplifying the Materials Genome Initiative's emphasis on predictive materials design and data-driven approaches to foster sustainable and innovative materials for a circular economy. This project is supported by the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) of the Directorate for Engineering (ENG), the Division of Materials Research (DMR) of the Directorate for Mathematical and Physical Sciences (MPS), and the Division of Information and Intelligent Systems (IIS) of the Directorate for Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管有多年的回收努力,但只有大约10%的聚合物废物最终出现在回收设施中,大多数人仍在垃圾填埋场或海洋中积累,强调了对可环友好的材料的需求,结合了可再生的采购,可持续处理,可持续处理和生物降解性。可热生物聚合物组件或生物塑料是环保材料,可以从生物细胞或组织(生物膜)中采购,而无需昂贵且浪费的提取和预处理。设计这些生物塑料的能力的最重要局限性是对控制生物植物转化为凝聚力生物塑料的基本机制的不良理解。这种设计材料彻底改变和设计我们的未来(DMREF)赠款支持将结合高通量数据捕获,多尺度建模和机器学习的研究,以了解控制从生物体到生物塑料过渡的分子和化学机制。有了这种理解,将开发设计途径来调整初始结构的加工和组成,以控制宏观特性,并在使用期间和使用后发生降解。这项工作的广泛影响将是一类完全可生物降解的塑料类,其性能与商品塑料相当,但可持续生产。为了支持下一代可持续材料劳动力,该赠款还将支持研究生和本科生的指导,积极参与外展活动,并努力提高STEM的多样性和包容性。在开发生态友好的材料中,新兴的变革性概念是使用生物学物质而没有任何提取过程来创建生物塑料。在了解生物聚合物的混合物如何转化为可热生物塑料以及加工参数如何控制结构和特性的方式方面仍然存在重大挑战。为了提供关键的见解,该项目将使用高通量方法来测量处理,光谱和形态特征,并应用机器学习方法来识别控制从有机体到塑料的转换的关键描述符。分子动力学模拟和高保真实验将增强对生物塑性形成和生物降解反应的理解。详细的结构和属性测量将用于验证有限元分析工具,该工具将识别最佳结构,以实现使用高吞吐量方法与商业塑料相媲美的属性。 Spirulina是一种丰富的光合微生物,已被证明在用热和压力处理时可以产生生物塑料。该项目的基本贡献将是一种设计方法,它说明了原始生物种类向生物塑料的过渡的复杂性,并举例说明了材料基因组计划对预测材料设计和数据驱动的方法的重视,以促进可持续性和创新材料为循环经济。该项目得到了工程局(ENG)的民用,机械和制造创新(CMMI)的支持使用基金会的智力优点和更广泛的影响评估标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lynda Brinson其他文献
Lynda Brinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lynda Brinson', 18)}}的其他基金
Collaborative Research: Disciplinary Improvements: Creating a FAIROS Materials Research Coordination Network (MaRCN) in the Materials Research Data Alliance
协作研究:学科改进:在材料研究数据联盟中创建 FAIROS 材料研究协调网络 (MaRCN)
- 批准号:
2226416 - 财政年份:2022
- 资助金额:
$ 79万 - 项目类别:
Standard Grant
Local Polymer Interfacial Mechanics: Effect of Topological and Chemical NanoPatterning
局部聚合物界面力学:拓扑和化学纳米图案的影响
- 批准号:
2040670 - 财政年份:2021
- 资助金额:
$ 79万 - 项目类别:
Continuing Grant
NRT-HDR: Harnessing AI for Understanding & Designing Materials (aiM)
NRT-HDR:利用 AI 进行理解
- 批准号:
2022040 - 财政年份:2020
- 资助金额:
$ 79万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Data: HDR: Nanocomposites to Metamaterials: A Knowledge Graph Framework
合作研究:框架:数据:HDR:纳米复合材料到超材料:知识图框架
- 批准号:
1835677 - 财政年份:2018
- 资助金额:
$ 79万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: A Data-Centric Approach for Accelerating the Design of Future Nanostructured Polymers and Composites Systems
DMREF/协作研究:加速未来纳米结构聚合物和复合材料系统设计的以数据为中心的方法
- 批准号:
1818574 - 财政年份:2017
- 资助金额:
$ 79万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: A Data-Centric Approach for Accelerating the Design of Future Nanostructured Polymers and Composites Systems
DMREF/协作研究:加速未来纳米结构聚合物和复合材料系统设计的以数据为中心的方法
- 批准号:
1729743 - 财政年份:2017
- 资助金额:
$ 79万 - 项目类别:
Standard Grant
Collaborative Research: NanoMine: Data Driven Discovery for Nanocomposites
合作研究:NanoMine:数据驱动的纳米复合材料发现
- 批准号:
1310292 - 财政年份:2013
- 资助金额:
$ 79万 - 项目类别:
Standard Grant
Direct Measurement of the role of Confinement and Chemistry on Local Physical and Mechanical Properties of Polymers
直接测量限制和化学对聚合物局部物理和机械性能的作用
- 批准号:
1235355 - 财政年份:2012
- 资助金额:
$ 79万 - 项目类别:
Standard Grant
New Approach to Nanoindentation Experiments and Modeling: Toward Fundamental Understanding of Thin Polymer Films and Polymer Nanocomposites
纳米压痕实验和建模的新方法:对聚合物薄膜和聚合物纳米复合材料有基本的了解
- 批准号:
0928050 - 财政年份:2009
- 资助金额:
$ 79万 - 项目类别:
Standard Grant
NIRT: Interphase Design for Extraordinary Nanocomposites: Multiscale Modeling and Characterization
NIRT:非凡纳米复合材料的界面设计:多尺度建模和表征
- 批准号:
0404291 - 财政年份:2004
- 资助金额:
$ 79万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 79万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 79万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 79万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Standard Grant