DMREF/Collaborative Research: A Data-Centric Approach for Accelerating the Design of Future Nanostructured Polymers and Composites Systems
DMREF/协作研究:加速未来纳米结构聚合物和复合材料系统设计的以数据为中心的方法
基本信息
- 批准号:1818574
- 负责人:
- 金额:$ 80.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-07 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Polymer nanocomposites are highly tailorable materials that, with careful design, can achieve superior properties not available with existing materials. Most polymer nanocomposites are developed using an Edisonian (trial and error) process, severely limiting the capacity to optimize performance and increasing time to implementation. The solution is a data-driven design approach. As an example, this Designing Materials to Revolutionize and Engineer our Future (DMREF) project will design new material systems that simultaneously optimize for dielectric response and mechanical durability, a combination currently not achievable but necessary for high voltage electrical transmission and conversion. These new materials will have a significant economic impact on society because they will enable higher efficiency generation and transmission of electricity. More broadly, this new design approach will result in new nanostructured polymer material systems that will impact a wide range of industries such as energy, consumer electronics, and manufacturing. To ensure broad access to this work, the data, tools and models developed will be integrated and shared through an open data resource, NanoMine. The team will interact with the scientific community to create an integrated virtual organization of designers and researchers to test and improve the models. Educational components will reach undergraduate and graduate communities via interdisciplinary cluster programs at the two institutions, and provide undergraduate research opportunities and web based instructional modules and workshops.The research is based on a central research hypothesis that using a data-driven approach, grounded in physics, allows integration of models that bridge length scales from angstroms to millimeters to predict dielectric and mechanical properties to enable the design and optimization of new materials. Data, algorithms and models will be integrated into the new and growing nanocomposite data resource NanoMine to address challenges in data-driven material design. This research will result in advancements in three areas. First, integrating a broad set of literature data and targeted experiments with multiscale methods will enable the development of interphase models to predict local polymer properties near interfaces considered critical for modeling polymer composites. Second, a hybrid approach utilizing machine-learning to bridge length scales between physics-based modeling domains will be used to create meaningful multiscale processing-structure-property relationship work flows. And, third, a Bayesian inference approach will utilize the knowledge contained in a dataset as a prior probability distribution and guide 'on-demand' computer simulations and physical experiments to accelerate the search of optimal material designs. Case studies will demonstrate the data-centric approach to accelerate the development of next-generation nanostructured polymers with predictable and optimized combinations of properties.
聚合物纳米复合材料是高度可定制的材料,通过精心设计,可以实现现有材料所不具备的卓越性能。大多数聚合物纳米复合材料是使用爱迪生(反复试验)过程开发的,严重限制了优化性能的能力并增加了实施时间。该解决方案是数据驱动的设计方法。例如,“设计材料以彻底改变和设计我们的未来”(DMREF) 项目将设计新的材料系统,同时优化介电响应和机械耐久性,这是目前无法实现的组合,但对于高压电力传输和转换来说是必需的。这些新材料将对社会产生重大的经济影响,因为它们将提高发电和传输效率。 更广泛地说,这种新的设计方法将产生新的纳米结构聚合物材料系统,这将影响能源、消费电子和制造业等广泛的行业。 为了确保这项工作的广泛获取,开发的数据、工具和模型将通过开放数据资源 NanoMine 进行集成和共享。该团队将与科学界互动,创建一个由设计师和研究人员组成的综合虚拟组织,以测试和改进模型。教育部分将通过两个机构的跨学科集群项目覆盖本科生和研究生社区,并提供本科生研究机会和基于网络的教学模块和研讨会。该研究基于一个中心研究假设,即使用基于物理学的数据驱动方法,允许集成从埃到毫米的长度尺度的模型,以预测介电和机械性能,从而实现新材料的设计和优化。数据、算法和模型将被集成到新的且不断增长的纳米复合材料数据资源 NanoMine 中,以应对数据驱动的材料设计中的挑战。这项研究将在三个领域取得进展。首先,将广泛的文献数据和有针对性的实验与多尺度方法相结合,将能够开发界面模型来预测对于聚合物复合材料建模至关重要的界面附近的局部聚合物性能。其次,利用机器学习来桥接基于物理的建模域之间的长度尺度的混合方法将用于创建有意义的多尺度处理-结构-属性关系工作流程。第三,贝叶斯推理方法将利用数据集中包含的知识作为先验概率分布,并指导“按需”计算机模拟和物理实验,以加速最佳材料设计的搜索。案例研究将展示以数据为中心的方法,以加速开发具有可预测和优化的性能组合的下一代纳米结构聚合物。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rethinking interphase representations for modeling viscoelastic properties for polymer nanocomposites
- DOI:10.1016/j.mtla.2019.100277
- 发表时间:2019-06-01
- 期刊:
- 影响因子:3.4
- 作者:Li, Xiaolin;Zhang, Min;Brinson, L. Catherine
- 通讯作者:Brinson, L. Catherine
Dielectric properties of polymer nanocomposite interphases from electrostatic force microscopy using machine learning
- DOI:10.1016/j.matchar.2021.110909
- 发表时间:2021-01-30
- 期刊:
- 影响因子:4.7
- 作者:Gupta, Praveen;Schadler, Linda S.;Sundararaman, Ravishankar
- 通讯作者:Sundararaman, Ravishankar
First-principles identification of localized trap states in polymer nanocomposite interfaces
聚合物纳米复合材料界面中局域陷阱态的第一性原理识别
- DOI:10.1557/jmr.2020.18
- 发表时间:2020
- 期刊:
- 影响因子:2.7
- 作者:Shandilya, Abhishek;Schadler, Linda S.;Sundararaman, Ravishankar
- 通讯作者:Sundararaman, Ravishankar
A Latent Variable Approach to Gaussian Process Modeling with Qualitative and Quantitative Factors
- DOI:10.1080/00401706.2019.1638834
- 发表时间:2018-06
- 期刊:
- 影响因子:2.5
- 作者:Yichi Zhang;Siyu Tao;Wei Chen-;D. Apley
- 通讯作者:Yichi Zhang;Siyu Tao;Wei Chen-;D. Apley
Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges
- DOI:10.3390/polym12010163
- 发表时间:2020-01-01
- 期刊:
- 影响因子:5
- 作者:Chen, Guang;Shen, Zhiqiang;Li, Ying
- 通讯作者:Li, Ying
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lynda Brinson其他文献
Lynda Brinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lynda Brinson', 18)}}的其他基金
DMREF/Collaborative Research: Accelerated Discovery of Sustainable Bioplastics: Automated, Tunable, Integrated Design, Processing and Modeling
DMREF/合作研究:加速可持续生物塑料的发现:自动化、可调、集成设计、加工和建模
- 批准号:
2323978 - 财政年份:2023
- 资助金额:
$ 80.94万 - 项目类别:
Standard Grant
Collaborative Research: Disciplinary Improvements: Creating a FAIROS Materials Research Coordination Network (MaRCN) in the Materials Research Data Alliance
协作研究:学科改进:在材料研究数据联盟中创建 FAIROS 材料研究协调网络 (MaRCN)
- 批准号:
2226416 - 财政年份:2022
- 资助金额:
$ 80.94万 - 项目类别:
Standard Grant
Local Polymer Interfacial Mechanics: Effect of Topological and Chemical NanoPatterning
局部聚合物界面力学:拓扑和化学纳米图案的影响
- 批准号:
2040670 - 财政年份:2021
- 资助金额:
$ 80.94万 - 项目类别:
Continuing Grant
NRT-HDR: Harnessing AI for Understanding & Designing Materials (aiM)
NRT-HDR:利用 AI 进行理解
- 批准号:
2022040 - 财政年份:2020
- 资助金额:
$ 80.94万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Data: HDR: Nanocomposites to Metamaterials: A Knowledge Graph Framework
合作研究:框架:数据:HDR:纳米复合材料到超材料:知识图框架
- 批准号:
1835677 - 财政年份:2018
- 资助金额:
$ 80.94万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: A Data-Centric Approach for Accelerating the Design of Future Nanostructured Polymers and Composites Systems
DMREF/协作研究:加速未来纳米结构聚合物和复合材料系统设计的以数据为中心的方法
- 批准号:
1729743 - 财政年份:2017
- 资助金额:
$ 80.94万 - 项目类别:
Standard Grant
Collaborative Research: NanoMine: Data Driven Discovery for Nanocomposites
合作研究:NanoMine:数据驱动的纳米复合材料发现
- 批准号:
1310292 - 财政年份:2013
- 资助金额:
$ 80.94万 - 项目类别:
Standard Grant
Direct Measurement of the role of Confinement and Chemistry on Local Physical and Mechanical Properties of Polymers
直接测量限制和化学对聚合物局部物理和机械性能的作用
- 批准号:
1235355 - 财政年份:2012
- 资助金额:
$ 80.94万 - 项目类别:
Standard Grant
New Approach to Nanoindentation Experiments and Modeling: Toward Fundamental Understanding of Thin Polymer Films and Polymer Nanocomposites
纳米压痕实验和建模的新方法:对聚合物薄膜和聚合物纳米复合材料有基本的了解
- 批准号:
0928050 - 财政年份:2009
- 资助金额:
$ 80.94万 - 项目类别:
Standard Grant
NIRT: Interphase Design for Extraordinary Nanocomposites: Multiscale Modeling and Characterization
NIRT:非凡纳米复合材料的界面设计:多尺度建模和表征
- 批准号:
0404291 - 财政年份:2004
- 资助金额:
$ 80.94万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
颅颌面手术机器人辅助半面短小牵张成骨术的智能规划与交互协作研究
- 批准号:
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:
面向自主认知与群智协作的多智能体制造系统关键技术研究
- 批准号:52305539
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
- 批准号:62371149
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
- 批准号:62362017
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 80.94万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 80.94万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 80.94万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 80.94万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 80.94万 - 项目类别:
Standard Grant