CIF: Small: An Algebraic, Convex, and Scalable Framework for Kernel Learning with Activation Functions

CIF:小型:具有激活函数的核学习的代数、凸性和可扩展框架

基本信息

  • 批准号:
    2323532
  • 负责人:
  • 金额:
    $ 33.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-12-01 至 2026-11-30
  • 项目状态:
    未结题

项目摘要

Public interest in machine learning has increased significantly in recent years, with application in a diversity of fields, from medical diagnosis to speech recognition to autonomous driving to advertising. The ability to sustain this interest, however, will depend on whether machine learning algorithms continue to advance in terms of both reliability, scalability, and interpretability. As more data becomes available, Will self-driving cars become safer? Will Siri understand you better? Will doctors be able to better understand the causes and treatments for diseases? While neural networks and deep learning have seen widespread adoption in recent years, the algorithms which underly these methods have not changed substantially in over 20 years. This project, therefore, revisits the fundamental mathematics which underly machine learning algorithms – integrating classical results with the popular neural-network based approaches. This mathematical framework is then used to propose new methods for improving the accuracy of machine learning, for increasing the ability to process large data sets, and for allowing the results of machine learning algorithms to be more readily interpreted in terms of measurable physical quantities. To achieve the goals of accuracy, scalability and interpretability, the project poses an algebraic reformulation of the classical problem of learning the kernel. Specifically, for any given kernel algebra, the positive kernels in that algebra and their associated feature maps may be represented by positive matrices – leading to a convex optimization problem whose solution yields an explicit feature map which may be interpreted in terms of measurable physical quantities. Based on this framework, activation functions are used to define kernel algebras which are universal, yet which are dense in the set of all kernels and whose feature maps mimic those of the neural tangent kernel which defines neural networks – leading to improved accuracy of the algorithms. Next, a saddle-point representation and primal-dual approach is used to convert the kernel learning problem to quadratic programming – resulting in more scalable kernel learning algorithms. Finally, a singular value decomposition of the resulting feature map is obtained by solving an associated partial differential equation. This decomposition is used to identify key features in the data and, furthermore, yields reduced algorithms which scale linearly with the number of samples – implying scalability to datasets with tens of thousands of samples.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,公众对机器学习的兴趣已大大增加,从医学诊断到语音识别再到自主驾驶再到广告的各种领域。但是,维持这一兴趣的能力将取决于机器学习算法是否在可靠性,可伸缩性和可解释性方面继续提高。随着越来越多的数据可用,自动驾驶汽车会变得更安全吗? Siri会更好地了解您吗?医生是否能够更好地了解疾病的原因和治疗方法?尽管近年来神经网络和深度学习已经广泛采用,但这些方法基础的算法在20多年中并没有发生很大变化。因此,该项目重新审视了基础机器学习算法的基本数学 - 将经典结果与流行的基于神经网络的方法相结合。然后,该数学框架被用来提出新的方法,以提高机器学习的准确性,提高处理大数据集的能力以及允许用可测量的物理量来更容易解释机器学习算法的结果。为了实现准确性,可伸缩性和解释性的目标,该项目对学习内核的经典问题提出了代数改革。具体而言,对于任何给定的内核代数,该代数及其相关特征图中的正核可以由积极物质代表 - 导致凸优化问题,其解决方案会产生明确的特征图,该特征图可以用可测量的物理量来解释。基于此框架,激活函数用于定义通用的内核代数,但在所有内核中都很致密,并且它们的特征映射模拟了神经元切线核的特征,该神经元切线核的特征是定义神经网络的,从而提高了算法的准确性。接下来,使用鞍点表示和原始的双重方法将内核学习问题转换为二次编程,从而产生了更可扩展的内核学习算法。最后,通过求解相关的部分微分方程来获得所得特征图的单数值分解。该分解用于识别数据中的关键特征,此外,算法减少了与样本数量线性缩小的算法 - 这意味着具有数万个样本的可扩展性对数据集进行了可扩展性。该奖项反映了NSF的法规任务,并认为通过基金会的知识绩效和广泛的cribia criperia criperia criperia the Insportaucation the Pocies taundia the Iss Issportiation。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Peet其他文献

Matthew Peet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Peet', 18)}}的其他基金

Optimizing Risk in a Gauss-Markov Process - Energy Storage Strategies for Renewable Integration
优化高斯-马尔可夫过程中的风险 - 可再生能源并网的储能策略
  • 批准号:
    1933243
  • 财政年份:
    2019
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
A Convex Computational Framework for Understanding and Controlling Nonlinear Systems
用于理解和控制非线性系统的凸计算框架
  • 批准号:
    1931270
  • 财政年份:
    2019
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
War on Boundary Conditions - A Control-Oriented Framework for Partial Differential Equations
边界条件之战 - 偏微分方程的面向控制的框架
  • 批准号:
    1935453
  • 财政年份:
    2019
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
CPS: Small: A Convex Framework for Control of Interconnected Systems over Delayed Networks
CPS:小型:延迟网络上互连系统控制的凸框架
  • 批准号:
    1739990
  • 财政年份:
    2017
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
Stability Analysis of Large-Scale Nonlinear Systems using Parallel Computation
使用并行计算的大规模非线性系统的稳定性分析
  • 批准号:
    1538374
  • 财政年份:
    2015
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
CAREER: A New Computational Framework for Control of Complex Systems
职业:复杂系统控制的新计算框架
  • 批准号:
    1301851
  • 财政年份:
    2012
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
CAREER: A New Computational Framework for Control of Complex Systems
职业:复杂系统控制的新计算框架
  • 批准号:
    1151018
  • 财政年份:
    2012
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
Solving Large Sum-of-Squares Optimization Problems in Control by Exploiting the Parallel Structure of Polya's Algorithm
利用Polya算法的并行结构解决控制中的大平方和优化问题
  • 批准号:
    1301660
  • 财政年份:
    2012
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
Solving Large Sum-of-Squares Optimization Problems in Control by Exploiting the Parallel Structure of Polya's Algorithm
利用Polya算法的并行结构解决控制中的大平方和优化问题
  • 批准号:
    1100376
  • 财政年份:
    2011
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant

相似国自然基金

基于替代数据的小微企业贷后信用风险动态评价方法研究
  • 批准号:
    72101073
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
根树上带权无穷小双代数和罗巴代数的研究
  • 批准号:
    12101316
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
基于替代数据的小微企业贷后信用风险动态评价方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
根树上带权无穷小双代数和罗巴代数的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
关于q-Schur代数和小q-Schur代数的若干研究
  • 批准号:
    11801312
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CIF:Small: Toward an Algebraic and Probabilistic Foundation for Network Information Theory based on Quasi Structured Codes
CIF:Small:基于准结构化码的网络信息论的代数和概率基础
  • 批准号:
    1717299
  • 财政年份:
    2017
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
CIF: Small: Algebraic Network Information Theory
CIF:小:代数网络信息论
  • 批准号:
    1618800
  • 财政年份:
    2016
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
CIF: Small: An Algebraic Approach to Distributed Source Coding
CIF:小:分布式源编码的代数方法
  • 批准号:
    1018148
  • 财政年份:
    2010
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
CIF: Small: Algebraic Methods in the Study of Some Problems in Communication Engineering
CIF:小:研究通信工程中一些问题的代数方法
  • 批准号:
    1016576
  • 财政年份:
    2010
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
CIF: Small: List Decoding for Algebraic Geometry Codes: Theoretical Analysis, Efficient Algorithms, Practical Implementation
CIF:小:代数几何代码的列表解码:理论分析、高效算法、实际实现
  • 批准号:
    0916492
  • 财政年份:
    2009
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了