Collaborative Research: CQIS: On-Chip Nanoscale Trap and Enhance Device (NOTED) for Quantum Photonics

合作研究:CQIS:用于量子光子学的片上纳米级陷阱和增强器件(注释)

基本信息

  • 批准号:
    2322892
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Quantum technologies are poised to usher in new capabilities for secure data communication, advanced computing, and improved sensing. In these applications, photons play a crucial role in transferring quantum information. Thus, developing sources of quantum light, single and entangled photons, is essential for advancing these applications and generating societal impact through new technologies/capabilities. Yet many of the existing techniques for producing quantum light are limited by their random production of photons in time or poor rate of photon production, and, they largely operate in free space. This work seeks to realize a device that is able to rapidly assemble and improve the rate of single photon production on-chip. It will provide new information into the manipulation and enhancement of quantum optical emitters across multiple length scales, realize a prototype device for single photon production on-chip, and develop resources for training a new generation of quantum optical scientists through the creation of virtual laboratory exercises and simulations.This project intends to realize ‘nanoscale emitter dock’ to simultaneously overcome two outstanding challenges for quasi-atom non-classical light sources - rapid and precise integration of an emitter alongside emission enhancement (trap and enhance) at room temperature. We accomplish this by engineering thermal and optical spatial distributions through non-resonant plasmonic structures paired with a standard low-loss photonic backbone (Si/SiN) for excitation and routing. Doing so enables a ‘multi-scale funnel’, synergistically combining electrothermoplasmonic (mm), negative thermophoretic (μm), and optical gradient forces (nm), to dock a single emitter with an electromagnetic hot-spot where strong enhancement to emission (Purcell effect) improves both the emission rate and stability. Through this we (A) deterministically route, capture, and ultimately print single quantum emitters (~20 nm) to a nanoscale hot-spot within seconds with sub-10 nm precision, (B) enhance the emission rate up to 1000× to achieve GHz-rates, (C) excite, capture, and guide light on-chip with dB/mm-scale loss.The proposed effort will culminate in the demonstration of a scalable and versatile platform for integrated on-demand GHz-rate single photon sources at room temperature, that will accelerate the expansion of compact quantum key distribution systems and quantum simulators. Moreover, the synergistic integration of optical gradient force, attractive negative thermophoretic force, and long-range electrothermoplasmonic flow for emitter transport and placement at plasmonic cavity hotspots have not been explored, and would provide a powerful means for long-range, precise, and strong optical manipulation on-chip. This manipulation (and the overall proposed device structure) is also general, and not dependent upon the properties of any emitter, solving existing heterogeneous integration challenges. It can also be completed in parallel, allowing an entire wafer to be loaded simultaneously, opening a route to scale source construction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子技术被毒化以引入新的功能,以进行安全数据通信,高级计算和提高灵敏度。在这些应用中,照片在传输量子信息中起着至关重要的作用。这是开发量子光,单张照片和纠缠的照片的来源,对于通过新技术/能力来推进这些应用程序并产生社会影响至关重要。然而,许多用于产生量子光的技术都受到时间或光子产生速率较差的照片的随机生产的限制,并且它们在很大程度上在自由空间中运行。这项工作旨在实现能够快速组装和提高片上单光子生产速率的设备。 It will provide new information into the manipulation and enhancement of quantum optical emitters across multiple length scales, realize a prototype device for single photon production on-chip, and develop resources for training a new generation of quantum optical scientists through the Creation of virtual laboratory exercises and simulations.This project intends to realize ‘nanoscale emitter dock’ to simply overcome two outstanding challenges for quasi-atom non-classical light sources - rapid and precise在室温下将发射极的集成以及发射增强(陷阱和增强)。我们通过与非共振的浆膜结构与标准低损耗光子主链(SI/SIN)配对的非共鸣浆结构来实现这一目标,以兴奋和路由。这样做可以实现“多尺度漏斗”,即协同结合电热(MM),负嗜热(μM)和光学梯度力(NM),以将单个发射极对接具有电磁热点,从而使对发射效果的强大增强(purcell效应)提高了两种发射速度。 Through this we (A) determinedly route, capture, and ultimately print single quantum emitters (~20 nm) to a nanoscale hot-spot within seconds with sub-10 nm precision, (B) enhance the emission rate up to 1000× to achieve GHz-rates, (C) excite, capture, and guide light on-chip with dB/mm-scale loss.The proposed effort will culminate in the demonstration of a scalable and versatile在室温下集成按需GHz速率单光子源的平台,这将加速紧凑型量子键分配系统和量子模拟器的扩展。此外,尚未探索光学梯度力,有吸引力的负嗜热力和远程电热流动的协同整合,用于在血浆腔腔热点处进行发射极的传输和放置,并将为长时间,精确,精确,精确的光学操纵提供强大的手段。这种操作(以及整体提出的设备结构)也是一般的,并且不依赖于任何发射极的特性,从而解决了现有的异质整合挑战。它也可以并行完成,可以简单地加载整个浪潮,从而打开规模源建设的途径。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,通过评估被认为是珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Justus Ndukaife其他文献

Justus Ndukaife的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Justus Ndukaife', 18)}}的其他基金

CAREER: Resonant Dielectric Optical Metasurfaces for Single-Cell Extracellular Vesicles (EV) Analysis
职业:用于单细胞胞外囊泡 (EV) 分析的共振介电光学超表面
  • 批准号:
    2143836
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Optically resonant nanotweezers using dielectric bowtie cavities
使用介电领结腔的光学谐振纳米镊子
  • 批准号:
    1933109
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CQIS: On-Chip Nanoscale Trap and Enhance Device (NOTED) for Quantum Photonics
合作研究:CQIS:用于量子光子学的片上纳米级陷阱和增强器件(注释)
  • 批准号:
    2322891
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CQIS: A Sound Leap (SouL)
合作研究:CQIS:声音飞跃 (SouL)
  • 批准号:
    2204382
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CQIS: A Sound Leap (SouL)
合作研究:CQIS:声音飞跃 (SouL)
  • 批准号:
    2204400
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FRG: cQIS: Collaborative Research: Mathematical Foundations of Topological Quantum Computation and Its Applications
FRG:cQIS:协作研究:拓扑量子计算的数学基础及其应用
  • 批准号:
    1664359
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FRG: cQIS: Collaborative Research: Mathematical Foundations of Topological Quantum Computation and Its Applications
FRG:cQIS:协作研究:拓扑量子计算的数学基础及其应用
  • 批准号:
    1664351
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了