Collaborative Research: CQIS: On-Chip Nanoscale Trap and Enhance Device (NOTED) for Quantum Photonics

合作研究:CQIS:用于量子光子学的片上纳米级陷阱和增强器件(注释)

基本信息

  • 批准号:
    2322892
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Quantum technologies are poised to usher in new capabilities for secure data communication, advanced computing, and improved sensing. In these applications, photons play a crucial role in transferring quantum information. Thus, developing sources of quantum light, single and entangled photons, is essential for advancing these applications and generating societal impact through new technologies/capabilities. Yet many of the existing techniques for producing quantum light are limited by their random production of photons in time or poor rate of photon production, and, they largely operate in free space. This work seeks to realize a device that is able to rapidly assemble and improve the rate of single photon production on-chip. It will provide new information into the manipulation and enhancement of quantum optical emitters across multiple length scales, realize a prototype device for single photon production on-chip, and develop resources for training a new generation of quantum optical scientists through the creation of virtual laboratory exercises and simulations.This project intends to realize ‘nanoscale emitter dock’ to simultaneously overcome two outstanding challenges for quasi-atom non-classical light sources - rapid and precise integration of an emitter alongside emission enhancement (trap and enhance) at room temperature. We accomplish this by engineering thermal and optical spatial distributions through non-resonant plasmonic structures paired with a standard low-loss photonic backbone (Si/SiN) for excitation and routing. Doing so enables a ‘multi-scale funnel’, synergistically combining electrothermoplasmonic (mm), negative thermophoretic (μm), and optical gradient forces (nm), to dock a single emitter with an electromagnetic hot-spot where strong enhancement to emission (Purcell effect) improves both the emission rate and stability. Through this we (A) deterministically route, capture, and ultimately print single quantum emitters (~20 nm) to a nanoscale hot-spot within seconds with sub-10 nm precision, (B) enhance the emission rate up to 1000× to achieve GHz-rates, (C) excite, capture, and guide light on-chip with dB/mm-scale loss.The proposed effort will culminate in the demonstration of a scalable and versatile platform for integrated on-demand GHz-rate single photon sources at room temperature, that will accelerate the expansion of compact quantum key distribution systems and quantum simulators. Moreover, the synergistic integration of optical gradient force, attractive negative thermophoretic force, and long-range electrothermoplasmonic flow for emitter transport and placement at plasmonic cavity hotspots have not been explored, and would provide a powerful means for long-range, precise, and strong optical manipulation on-chip. This manipulation (and the overall proposed device structure) is also general, and not dependent upon the properties of any emitter, solving existing heterogeneous integration challenges. It can also be completed in parallel, allowing an entire wafer to be loaded simultaneously, opening a route to scale source construction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子技术有望带来安全数据通信、先进计算和改进传感的新功能,在这些应用中,光子在传输量子信息方面发挥着至关重要的作用,因此,开发量子光源(单光子和纠缠光子)至关重要。然而,许多现有的产生量子光的技术都受到光子随机产生或光子产生率较低的限制,而且它们主要在自由空间中运行。这项工作旨在实现一种设备它能够快速组装并提高片上单光子产生的速率,它将为跨多个长度尺度的量子光学发射器的操纵和增强提供新的信息,实现片上单光子产生的原型设备,以及通过创建虚拟实验室练习和模拟,开发资源来培训新一代量子光学科学家。该项目旨在实现“纳米级发射器对接”,以同时克服准原子非经典光源的两个突出挑战——快速和精确整合我们通过非共振等离子体结构与用于激发和路由的标准低损耗光子主干(Si/SiN)相结合来设计热和光学空间分布,从而实现了室温下的发射器和发射增强(捕获和增强)。实现“多尺度漏斗”,协同结合电热等离子 (mm)、负热泳 (μm) 和光学梯度力 (nm),将单个发射器与电磁通过这种方式,我们 (A) 在几秒钟内确定性地路由、捕获并最终将单个量子发射器(~20 nm)打印到纳米级热点。具有亚 10 nm 精度,(B) 将发射速率提高至 1000 倍以实现 GHz 速率,(C) 以 dB/mm 级损耗激发、捕获和引导片上光。拟议的工作将最终展示一个可扩展和多功能的平台,用于在室温下集成按需 GHz 速率单光子源,这将加速紧凑型量子密钥分配系统和量子模拟器的扩展。光梯度力、吸引负热泳力和用于发射器在等离激元腔热点处传输和放置的长程电热等离子流尚未被探索,这将为远程、精确和强发射提供有力的手段。这种操作(以及总体提出的器件结构)也是通用的,并且不依赖于任何发射器的特性,解决了现有的异构集成挑战,它也可以并行完成,从而允许整个晶圆被集成。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Justus Ndukaife其他文献

Justus Ndukaife的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Justus Ndukaife', 18)}}的其他基金

CAREER: Resonant Dielectric Optical Metasurfaces for Single-Cell Extracellular Vesicles (EV) Analysis
职业:用于单细胞胞外囊泡 (EV) 分析的共振介电光学超表面
  • 批准号:
    2143836
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Optically resonant nanotweezers using dielectric bowtie cavities
使用介电领结腔的光学谐振纳米镊子
  • 批准号:
    1933109
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CQIS: On-Chip Nanoscale Trap and Enhance Device (NOTED) for Quantum Photonics
合作研究:CQIS:用于量子光子学的片上纳米级陷阱和增强器件(注释)
  • 批准号:
    2322891
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CQIS: A Sound Leap (SouL)
合作研究:CQIS:声音飞跃 (SouL)
  • 批准号:
    2204382
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CQIS: A Sound Leap (SouL)
合作研究:CQIS:声音飞跃 (SouL)
  • 批准号:
    2204400
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FRG: cQIS: Collaborative Research: Mathematical Foundations of Topological Quantum Computation and Its Applications
FRG:cQIS:协作研究:拓扑量子计算的数学基础及其应用
  • 批准号:
    1664359
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FRG: cQIS: Collaborative Research: Mathematical Foundations of Topological Quantum Computation and Its Applications
FRG:cQIS:协作研究:拓扑量子计算的数学基础及其应用
  • 批准号:
    1664351
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了