Collaborative Research: CQIS: A Sound Leap (SouL)
合作研究:CQIS:声音飞跃 (SouL)
基本信息
- 批准号:2204382
- 负责人:
- 金额:$ 40.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-11-01 至 2025-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This grant will support research that will be a leap forward in advancing sound as a classical analogue of quantum information science (QIS), promoting the progress of science, and ensuring US leadership in QIS, which is a national priority. The development of robust, classically entangled acoustic waves analogous to quantum bits, or qubits, can make impactful contributions as core components of practical quantum-like technologies without suffering from quantum fragility. By exploiting recently discovered analogies between acoustics, quantum mechanics, and condensed matter physics, this research will create the foundations for a path to promising and validating modes of storing, processing, and retrieving information in acoustic waves that complement conventional quantum technologies. This grant will support the development of educational resources that bridge the educational gap between classical mechanics and quantum mechanics for future QIS learners. It will help broaden the participation of underrepresented groups in gaining a working understanding of acoustic quantum analogies and related complex quantum concepts.At the core of QIS, quantum entanglement has the property of non-separability. While non-separability creates the possibility of operating in parallel on the coherent superpositions of states for multipartite quantum systems, the quantum coherent superpositions of wave functions (probability amplitude) collapse upon measurement or thermal fluctuations. Costly solutions are cryogenics and error corrections, both use significant hardware and software resources. However, quantum computing is essentially phase computing; it exploits the possibility of achieving and rotating the coherent superpositions of states of correlated multipartite systems with complex amplitudes that are represented as vectors in large, exponentially complex Hilbert spaces. The notion of “classical entanglement” for sound waves possesses the non-separability and complexity essential to reach the promise of parallelism in quantum computing, yet without the fragility of decoherence even at room temperature. The research team will investigate metamaterials comprising arrays of externally driven, linearly and nonlinearly coupled, acoustic waveguides, known for supporting acoustic waves analogous to qubits, namely phase-bits or phi-bits. The team will experimentally, computationally, and theoretically investigate the exponentially complex and scalable Hilbert spaces of states of multiple phi-bits and the non-separability of their coherent superpositions. They will analyze the scalability and controllability of Hilbert space with billions of dimensions and their QIS applicability, and demonstrate systematic and predictable proof-of-concept operations within these Hilbert spaces to establish foundations for acoustic quantum-like gates and algorithms for future quantum-like information processing.This project is jointly funded by Dynamics, Control and Systems Diagnostics (DCSD) Program and Mechanics of Materials & Structures (MOMS) Program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项赠款将支持研究,这将是量子信息科学(QIS)的经典类似物,促进科学进步并确保美国在QIS的领导地位,这将是一项前进的发展,这是国家的优先事项。强大的,经典的纠缠的声波的发展类似于量子位或量子位,可以作为实用量子样技术的核心组成部分做出影响的贡献,而不会遇到量子脆弱性。通过利用最近发现的声学,量子力学和凝结物理学之间的类比,这项研究将为承诺和验证存储,加工和检索信息的信息的途径创造基础,以补充传统量子技术。该赠款将支持开发教育资源,以弥合经典力学和量子力学之间的教育差距,以供未来的QIS学习者使用。它将有助于扩大代表性不足的群体在获得对声学量子类比和相关复杂量子概念的工作理解中的参与。在QIS的核心中,量子纠缠具有不可分割性的特性。尽管不可分割性创造了在多部分量子系统的状态相干叠加上并行运行的可能性,而在测量或热波动下,波函数(概率放大器)的量子相干叠加(概率放大器)崩溃。解决方案是低温和错误校正,都使用大量的硬件和软件资源。但是,量子计算本质上是相计算。它利用了与复杂的放大器的相关多部分系统状态的相干叠加的可能性,这些状态具有复杂的放大器,这些放大器表示为大型,指数复杂的希尔伯特空间中的向量。声波的“经典纠缠”的概念具有实现量子计算中并行的承诺所必需的不可分割性和复杂性,但即使在室温下也没有脆弱性的脆弱性。研究团队将研究完成的超材料,以完成外部驱动,线性和非线性耦合的声学波导的阵列,以支持类似量化的声波,即相位位或Phi-lits而闻名。该团队将通过实验,计算和理论上研究多个PHI位状态的状态的指数复杂且可扩展的希尔伯特空间以及其相干叠加的不可分割性。他们将使用数十亿个维度及其适用性分析希尔伯特空间的可伸缩性和可控性,并在这些希尔伯特空间内展示系统的,可预测的概念证明操作,以建立基础,以实现声学量子量和算法的基础,用于未来的量子型信息处理。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响标准通过评估被认为是宝贵的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalable exponentially complex representations of logical phi-bit states and experimental demonstration of an operable three phi-bit gate using an acoustic metastructure
逻辑 phi 位状态的可扩展指数复杂表示以及使用声学元结构的可操作三 phi 位门的实验演示
- DOI:10.1063/5.0136733
- 发表时间:2023
- 期刊:
- 影响因子:4
- 作者:Deymier, P. A.;Runge, K.;Cutillas, P.;Hasan, M. A.;Lata, T. D.;Levine, J. A.
- 通讯作者:Levine, J. A.
Tuning Logical Phi-Bit State Vectors in an Externally Driven Nonlinear Array of Acoustic Waveguides via Drivers’ Phase
通过驱动器相位调整外部驱动非线性声波导阵列中的逻辑 Phi 位状态向量
- DOI:10.3390/quantum5020022
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Deymier, Pierre A.;Runge, Keith;Hasan, M. Arif;Lata, Trevor D.;Levine, Josh A.
- 通讯作者:Levine, Josh A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Md Arif Hasan其他文献
Cognitive Distance and Women in Software Engineering: An Empirical Study in the Context of Bangladesh
认知距离与软件工程领域的女性:孟加拉国背景下的实证研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Noshin Tahsin;Md Arif Hasan;Rafiul Islam;K. Sakib - 通讯作者:
K. Sakib
Greenhouse gas emissions from energy sector in the United Arab Emirates – An overview
阿拉伯联合酋长国能源部门的温室气体排放——概述
- DOI:
10.1016/j.rser.2016.01.027 - 发表时间:
2016 - 期刊:
- 影响因子:15.9
- 作者:
A. N. Khondaker;Md Arif Hasan;S. Rahman;Karim Malik;Shafiullah;Musah Ahmed Rufai Muhyedeen - 通讯作者:
Musah Ahmed Rufai Muhyedeen
Md Arif Hasan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CQIS: On-Chip Nanoscale Trap and Enhance Device (NOTED) for Quantum Photonics
合作研究:CQIS:用于量子光子学的片上纳米级陷阱和增强器件(注释)
- 批准号:
2322891 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
Collaborative Research: CQIS: On-Chip Nanoscale Trap and Enhance Device (NOTED) for Quantum Photonics
合作研究:CQIS:用于量子光子学的片上纳米级陷阱和增强器件(注释)
- 批准号:
2322892 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
Collaborative Research: CQIS: A Sound Leap (SouL)
合作研究:CQIS:声音飞跃 (SouL)
- 批准号:
2204400 - 财政年份:2022
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
FRG: cQIS: Collaborative Research: Mathematical Foundations of Topological Quantum Computation and Its Applications
FRG:cQIS:协作研究:拓扑量子计算的数学基础及其应用
- 批准号:
1664359 - 财政年份:2017
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
FRG: cQIS: Collaborative Research: Mathematical Foundations of Topological Quantum Computation and Its Applications
FRG:cQIS:协作研究:拓扑量子计算的数学基础及其应用
- 批准号:
1664351 - 财政年份:2017
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant