CAREER: SHF: Chimp: Algorithm-Hardware-Automation Co-Design Exploration of Real-Time Energy-Efficient Motion Planning

职业:SHF:黑猩猩:实时节能运动规划的算法-硬件-自动化协同设计探索

基本信息

  • 批准号:
    2239945
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2027-12-31
  • 项目状态:
    未结题

项目摘要

As the fundamental and critical robotic task for planning and deciding the actions of robots, motion planning is widely desired in many real-world applications, such as autonomous driving, in-warehouse package handling, assisted surgery etc. To date, there exists an increasing performance gap between the intensive computation of modern motion planning workloads and the insufficient support from general-purpose hardware, calling for efficient hardware acceleration to realize real-time energy-efficient high-quality planning. This project proposes Chimp, a cross-layer co-design framework for highly efficient motion planning processor. Chimp aims to develop a new design paradigm that can efficiently integrate domain expertise into learning-based motion planning, improving the planning reliability and performance. This project will significantly promote the intelligence and durability of modern autonomous systems, enhancing the economic opportunities in many fields such as autonomous driving, smart manufacturing, and intelligent healthcare. This project will enrich the curriculum of the university and promote the involvement of students from underrepresented minority groups, undergraduates and K-12 students in the STEM fields.This project aims to perform algorithm-hardware-automation co-exploration to simultaneously enable high planning performance and high hardware performance. It delivers innovations at three levels: (1) it develops key design principles that can guide the efficient integration of domain expertise to the construction of high-performance learning-based motion planners in complex physical-world settings and resource-constrained scenarios; (2) it builds new hardware primitives that specifically support the unique computing patterns in motion planning. It also proposes a series of optimization techniques for dataflow and microarchitecture, improving hardware efficiency and system utilization; and (3) it offers automatic design, mapping and evaluation of the motion planning model and hardware with different algorithmic, architectural and application constraints and budgets, enabling the improved efficiency of design flow and better exploration of design space. Both software and hardware implementation and evaluation will be performed on robotic simulators, Field-programmable gate array boards and real-world robots in different working environments. The research outcomes of this project will advance various technical fields, such as computing hardware, robotics and machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
作为规划和决定机器人动作的基本且关键的机器人任务,运动规划在许多实际应用中被广泛需要,例如自动驾驶、仓库内包裹处理、辅助手术等。迄今为止,运动规划在许多实际应用中得到了广泛的应用。现代运动规划工作负载的密集计算与通用硬件支持不足之间的性能差距,需要高效的硬件加速来实现实时节能的高质量规划。该项目提出了 Chimp,一种用于高效运动规划处理器的跨层协同设计框架。 Chimp 旨在开发一种新的设计范例,可以有效地将领域专业知识集成到基于学习的运动规划中,从而提高规划的可靠性和性能。该项目将显着提升现代自动驾驶系统的智能性和耐用性,增强自动驾驶、智能制造、智能医疗等多个领域的经济机会。该项目将丰富大学的课程,并促进少数族裔学生、本科生和 K-12 学生参与 STEM 领域。该项目旨在进行算法-硬件-自动化协同探索,同时实现高规划性能和高硬件性能。它在三个层面上提供创新:(1)它开发了关键的设计原则,可以指导领域专业知识的有效集成,以在复杂的物理世界环境和资源受限的场景中构建高性能的基于学习的运动规划器; (2)它构建了新的硬件原语,专门支持运动规划中的独特计算模式。还提出了一系列针对数据流和微架构的优化技术,提高硬件效率和系统利用率; (3)它提供了具有不同算法、架构和应用约束和预算的运动规划模型和硬件的自动设计、映射和评估,从而提高了设计流程的效率并更好地探索设计空间。软件和硬件的实现和评估都将在机器人模拟器、现场可编程门阵列板和不同工作环境中的真实机器人上进行。该项目的研究成果将推动计算硬件、机器人和机器学习等各个技术领域的发展。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GraphMP: Graph Neural Network-based Motion Planning with Efficient Graph Search
GraphMP:具有高效图搜索的基于图神经网络的运动规划
  • DOI:
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zang, X;Yin, M;Xiao, J;Zonouz S;Yuan, B.
  • 通讯作者:
    Yuan, B.
DynGMP: Graph Neural Network-based Motion Planning in Unpredictable Dynamic Environments
DynGMP:不可预测的动态环境中基于图神经网络的运动规划
  • DOI:
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhang, W;Zang, X;Huang, L;Sui, Y;Yu, J;Chen, Y;Yuan, B.
  • 通讯作者:
    Yuan, B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bo Yuan其他文献

Recommending People to Follow Using Asymmetric Factor Models with Social Graphs
使用带有社交图的不对称因素模型推荐人们关注
  • DOI:
    10.1007/978-3-319-00930-8_24
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianle Ma;Yujiu Yang;Liangwei Wang;Bo Yuan
  • 通讯作者:
    Bo Yuan
Psychological Distress and Its Correlates Among COVID-19 Survivors During Early Convalescence Across Age Groups
不同年龄段的 COVID-19 幸存者在康复早期的心理困扰及其相关性
  • DOI:
    10.1016/j.jagp.2020.07.003
  • 发表时间:
    2020-07-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Cai;Xiaopeng Hu;Ivo Otte Ekumi;Jianchun Wang;Yawen An;Zhiwen Li;Bo Yuan
  • 通讯作者:
    Bo Yuan
Associations Between a History of Depression and Cognitive Performance Among Older Adults in Shandong, China
中国山东老年人抑郁史与认知表现之间的关联
  • DOI:
    10.1007/s10597-019-00461-1
  • 发表时间:
    2019-09-18
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Bo Yuan;V. Yiengprugsawan
  • 通讯作者:
    V. Yiengprugsawan
NMF hyperspectral unmixing algorithm combined with spatial and spectral correlation analysis
结合空间和光谱相关分析的 NMF 高光谱解混算法
A Normalized Difference Spectral Recognition Index for Azurite Pigment
蓝铜矿颜料的归一化差异光谱识别指数
  • DOI:
    10.1177/0003702820909435
  • 发表时间:
    2020-02-19
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Taixia Wu;Bo Yuan;Shudong Wang;Guanghua Li;Y. Lei
  • 通讯作者:
    Y. Lei

Bo Yuan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bo Yuan', 18)}}的其他基金

Collaborative Research: SHF: Medium: TensorNN: An Algorithm and Hardware Co-design Framework for On-device Deep Neural Network Learning using Low-rank Tensors
合作研究:SHF:Medium:TensorNN:使用低秩张量进行设备上深度神经网络学习的算法和硬件协同设计框架
  • 批准号:
    1955909
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Renewal: Preparing Crosscutting Cybersecurity Scholars
更新:培养跨领域网络安全学者
  • 批准号:
    1922169
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
  • 批准号:
    1854742
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: LDPD-Net: A Framework for Accelerated Architectures for Low-Density Permuted-Diagonal Deep Neural Networks
SHF:小型:协作研究:LDPD-Net:低密度置换对角深度神经网络加速架构框架
  • 批准号:
    1854737
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: LDPD-Net: A Framework for Accelerated Architectures for Low-Density Permuted-Diagonal Deep Neural Networks
SHF:小型:协作研究:LDPD-Net:低密度置换对角深度神经网络加速架构框架
  • 批准号:
    1815699
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
  • 批准号:
    1733834
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SFS: Preparing Crosscutting Cybersecurity Scholars
SFS:培养跨领域网络安全学者
  • 批准号:
    1433736
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
  • 批准号:
    42274025
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CRII: SHF: Systematic Construction of Teaching Language Progressions for Embedded Domain-Specific Languages
CRII:SHF:嵌入式领域特定语言教学语言进程的系统构建
  • 批准号:
    2348408
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Medium: Provably Correct, Energy-Efficient Edge Computing
SHF:中:可证明正确、节能的边缘计算
  • 批准号:
    2403144
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
  • 批准号:
    2334628
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了