CAREER: CAS: Broadband UV-NIR Ultrafast Photochemistry Imaged in Space and Time

职业:CAS:宽带 UV-NIR 超快光化学在时空成像

基本信息

  • 批准号:
    2239539
  • 负责人:
  • 金额:
    $ 65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-15 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

With support from the Chemical Structure, Dynamics, and Mechanisms-A (CSDM-A) program in the Division of Chemistry, Elham Ghadiri of Wake Forest University is advancing time-resolved microscopies and using them to visualize how the fundamental photochemical charge-transfer processes taking place in solar light-harvesting materials are affected by the microscopic structure of their local surroundings. Capturing these charge-transfer processes is challenging, however, as they take place in times approaching a millionth of a billionth of a second, and the time scales vary from one point to another in a material on nanometer length scales. Dr. Ghadiri and her students are developing femtosecond optical microscopy techniques that can visualize the fundamental photochemical reactions in light-harvesting semiconductors made from earth-abundant materials. Their discoveries could lead to a better understanding of complex photochemical processes that take place in highly heterogenous materials, as well as help to develop design criteria for efficient light-harvesting materials used in future clean energy generation and storage applications. In partnership with the WFU sustainability program, the Ghadiri group will engage in community outreach using research-based educational platforms designed to educate people of all ages about the role of sustainable solar devices in daily life as one aspect of climate change mitigation. The Ghadiri group will develop ultrafast microscopy and spectroscopy methods to allow the visualization of fundamental photoinduced reaction dynamics in complex and heterogeneous solar energy conversion materials. The primary focus is on semiconductors that are highly light-absorbing and that are based on earth-abundant elements, which makes them promising candidates for sustainable energy conversion applications. The performance of solar cells fabricated from the materials depends on the efficiency of ultrafast and fast electron and proton transfer reactions that occur independently, and in competition with each other. Ultrafast transient absorption and diffuse reflectance microscopies will be used to probe the dynamics on sub-micron length scales and ultrafast time scales with broad spectral coverage. The project aims to provide an in-depth spatiotemporal analysis of charge carrier processes that are central to solar cell function. The advancement of microscopy tools that push the limits of conventional time-resolved spectroscopy is a potential broader impact of the work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学结构、动力学和机理-A (CSDM-A) 项目的支持下,维克森林大学的 Elham Ghadiri 正在推进时间分辨显微镜技术,并利用它们来可视化基本光化学电荷转移过程太阳能光收集材料中发生的变化受到当地环境微观结构的影响。然而,捕获这些电荷转移过程具有挑战性,因为它们发生的时间接近十亿分之一秒,并且时间尺度在纳米长度尺度的材料中从一个点到另一个点都有所不同。加迪里博士和她的学生正在开发飞秒光学显微镜技术,该技术可以可视化由地球丰富的材料制成的光捕获半导体中的基本光化学反应。他们的发现可以帮助人们更好地理解高度异质材料中发生的复杂光化学过程,并有助于制定未来清洁能源发电和存储应用中使用的高效光捕获材料的设计标准。 Ghadiri 集团将与 WFU 可持续发展计划合作,利用基于研究的教育平台开展社区外展活动,该平台旨在教育所有年龄段的人们了解可持续太阳能设备在日常生活中的作用,作为减缓气候变化的一个方面。 Ghadiri 小组将开发超快显微镜和光谱方法,以实现复杂和异质太阳能转换材料中基本光致反应动力学的可视化。主要重点是具有高吸光性且基于地球丰富元素的半导体,这使得它们成为可持续能源转换应用的有希望的候选者。由这些材料制成的太阳能电池的性能取决于独立发生且相互竞争的超快和快速电子和质子转移反应的效率。超快瞬态吸收和漫反射显微镜将用于探测亚微米长度尺度和具有宽光谱覆盖范围的超快时间尺度上的动力学。该项目旨在对太阳能电池功能至关重要的载流子过程进行深入的时空分析。显微镜工具的进步突破了传统时间分辨光谱学的极限,是这项工作潜在的更广泛的影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced photochemical activity and ultrafast photocarrier dynamics in sustainable synthetic melanin nanoparticle-based donor–acceptor inkjet-printed molecular junctions
基于可持续合成黑色素纳米粒子的供体-受体喷墨打印分子连接中增强的光化学活性和超快光载流子动力学
  • DOI:
    10.1039/d3nr02387g
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    DeMarco, Ma;Ballard, Matthew;Grage, Elinor;Nourigheimasi, Farnoush;Getter, Lillian;Shafiee, Ashkan;Ghadiri, Elham
  • 通讯作者:
    Ghadiri, Elham
Ultrafast microscopy and image segmentation of spatially heterogeneous excited state and trap passivation in Cu2BaSnSSe3
Cu2BaSnSSe3 中空间异质激发态和陷阱钝化的超快显微镜和图像分割
  • DOI:
    10.1016/j.xcrp.2023.101601
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Hannah Luebbering;A. Shafiee;B. Teymur;Yongshin Kim;D. Mitzi;E. Ghadiri
  • 通讯作者:
    E. Ghadiri
Nanosecond Diffuse Reflectance Spectroscopy for In-Situ Analysis of Electron Back-Recombination and Dye Regeneration in Fully Functional, Highly Efficient, Opaque Dye-Sensitized Solar Cell Devices
纳秒漫反射光谱用于全功能、高效、不透明染料敏化太阳能电池器件中电子返回复合和染料再生的原位分析
  • DOI:
    10.1021/acs.jpcc.3c05382
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ghadiri, Elham;Moser, Jacques
  • 通讯作者:
    Moser, Jacques
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elham Ghadiri其他文献

Enhanced photochemical activity and ultrafast photocarrier dynamics in sustainable synthetic melanin nanoparticle-based donor–acceptor inkjet-printed molecular junctions
  • DOI:
    10.1039/d3nr02387g
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Max DeMarco;Matthew Ballard;Elinor Grage;Farnoush Nourigheimasi;Lillian Getter;Ashkan Shafiee;Elham Ghadiri
  • 通讯作者:
    Elham Ghadiri

Elham Ghadiri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

兼容等温扩增的双CRISPR/Cas12方法体系构建及其多重精准监测肉及肉制品食用安全的应用研究
  • 批准号:
    82373629
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
硫酸盐还原菌快速分型光电化学Cas14a传感机制的研究
  • 批准号:
    42306225
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于内源CRISPR/Cas与模块化报告系统的多杀菌素调控机制与高产策略研究
  • 批准号:
    32370064
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于CRISPR/Cas系统的活细胞内特异性mRNA标志物的单分子成像分析研究
  • 批准号:
    22304008
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
通过构建Pgr-Cas9工具小鼠研究Hippo通路效应因子Yap1/Wwtr1在蜕膜化过程中的作用
  • 批准号:
    32370913
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347912
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347913
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
CAS:Improving the Activity of Homogeneous Mn Catalysts for the Oxygen Reduction Reaction
CAS:提高均相锰催化剂的氧还原反应活性
  • 批准号:
    2348515
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
CAS: Degradable Polyacrylates From Natural and Scalable Building Blocks
CAS:来自天然和可扩展构件的可降解聚丙烯酸酯
  • 批准号:
    2348679
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
CAREER: CAS- Climate -- Air-quality-related environmental justice impacts of decarbonization scenarios
职业:CAS-气候——脱碳情景与空气质量相关的环境正义影响
  • 批准号:
    2339462
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了