CAREER: Unifying Scientific Knowledge with Machine Learning for Forward, Inverse, and Hybrid Modeling of Scientific Systems

职业:将科学知识与机器学习相结合,对科学系统进行正向、逆向和混合建模

基本信息

项目摘要

One of the fundamental goals in science is to build mathematical models of scientific systems that can explain the nature of the physical world by predicting the system's behavior. Current standards of science-based models, rooted in scientific theories and equations, suffer from several shortcomings in modeling complex real-world systems. At the core of these shortcomings is their theoretical scientific nature that restricts them from making effective use of data that is not well-described theoretically. Consequently, machine learning methods, that can automatically extract patterns and relationships from data, are increasingly being viewed as promising alternatives to science-based models. However, black-box machine learning models, that solely rely on information contained in data and are agnostic to scientific theories, have met with limited success in scientific problems. Instead, there is a growing realization to unify scientific knowledge with machine learning in the emerging field of knowledge-guided machine learning. This project aims to make novel advances in knowledge-guided machine learning in the context of three driving use-cases: fluid dynamics, aerosol modeling, and lake modeling. A central goal of this project is to prepare the next generation of workforce in science and engineering comprising of a diverse cadre of students who can easily cross disciplinary boundaries between machine learning and scientific fields. This project will also have direct impacts to science and society through the three real-world use-cases and through collaborations with industry partners. The long-term vision of this project is to establish knowledge-guided machine learning as a full-fledged research and education discipline for the advancement of science. This project aims to make novel advances in three primary research tasks of knowledge-guided machine learning: forward modeling with scientific equations and data, inverse modeling for inferring parameters in science-based models, and hybrid-science-machine learning modeling to remove imperfections in science-based models. This project will contribute transformative innovations in knowledge-guided machine learning for incorporating a wide variety of scientific knowledge in machine learning frameworks, from partial differential equations in fluid dynamics to numerical models in aerosol modeling and phenomenological rules in lake modeling. In the task of forward modeling, this project will develop a new class of algorithms in science-guided curriculum learning to exploit the interplay between data-driven and scientific supervision while training deep learning models. This project will also develop novel science-guided resampling strategies for generating scientifically consistent predictions during inference. In the task of inverse modeling, this project will lead to novel formulations of knowledge-guided inverse modeling, where scientific supervision (in terms of knowledge of the forward model) is used to guide the training of machine learning-based inverse models. In the task of hybrid modeling, this project will result in a new class of residual correcting neural networks for augmenting systematic biases or residuals in science-based outputs, and methods to jointly infer parameters of science-based models while correcting for residuals in their outputs. Beyond the three use-cases, the methodologies developed in this project can potentially impact a number of scientific disciplines where scientific knowledge and models are routinely used.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学的基本目标之一是建立科学系统的数学模型,通过预测系统的行为来解释物理世界的本质。当前基于科学的模型标准植根于科学理论和方程,在对复杂的现实世界系统进行建模时存在一些缺点。这些缺点的核心是它们的理论科学性,限制了它们有效利用理论上没有很好描述的数据。因此,能够自动从数据中提取模式和关系的机器学习方法越来越被视为基于科学的模型的有前途的替代方案。然而,黑盒机器学习模型仅依赖于数据中包含的信息,并且与科学理论无关,在解决科学问题上取得的成功有限。相反,人们越来越认识到在知识引导的机器学习这一新兴领域将科学知识与机器学习相结合。该项目旨在在流体动力学、气溶胶建模和湖泊建模这三个驱动用例的背景下,在知识引导的机器学习方面取得新的进展。该项目的中心目标是培养下一代科学和工程人才,其中包括能够轻松跨越机器学习和科学领域之间学科界限的多元化学生骨干。该项目还将通过三个现实用例以及与行业合作伙伴的合作对科学和社会产生直接影响。该项目的长期愿景是将知识引导的机器学习建立为促进科学进步的成熟研究和教育学科。该项目旨在在知识引导机器学习的三个主要研究任务方面取得新进展:利用科学方程和数据进行正向建模、在基于科学的模型中推断参数的逆向建模以及消除模型中缺陷的混合科学机器学习建模。基于科学的模型。该项目将为知识引导的机器学习做出变革性创新,将各种科学知识纳入机器学习框架,从流体动力学中的偏微分方程到气溶胶建模中的数值模型和湖泊建模中的现象学规则。在正向建模任务中,该项目将在科学引导的课程学习中开发一类新型算法,以在训练深度学习模型时利用数据驱动和科学监督之间的相互作用。该项目还将开发新颖的科学引导重采样策略,以便在推理过程中生成科学一致的预测。在逆向建模任务中,该项目将带来知识引导逆向建模的新颖表述,其中科学监督(就正向模型的知识而言)用于指导基于机器学习的逆向模型的训练。在混合建模任务中,该项目将产生一类新型残差校正神经网络,用于增强基于科学的输出中的系统偏差或残差,以及联合推断基于科学的模型的参数,同时校正其输出中的残差的方法。除了这三个用例之外,该项目开发的方法可能会影响经常使用科学知识和模型的许多科学学科。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anuj Karpatne其他文献

Anuj Karpatne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anuj Karpatne', 18)}}的其他基金

Collaborative Research: MRA: Advancing process understanding of lake water quality to macrosystem scales with knowledge-guided machine learning
合作研究:MRA:通过知识引导的机器学习将湖泊水质的过程理解推进到宏观系统尺度
  • 批准号:
    2213550
  • 财政年份:
    2022
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Standard Grant
III:Medium:Physics-guided Machine Learning for Predicting Cell Trajectories, Shapes, and Interactions in Complex Dynamic Environments
III:中:物理引导机器学习,用于预测复杂动态环境中的细胞轨迹、形状和相互作用
  • 批准号:
    2107332
  • 财政年份:
    2021
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research:III: Exploring Physics Guided Machine Learning for Accelerating Sensing and Physical Sciences
EAGER:协作研究:III:探索物理引导机器学习以加速传感和物理科学
  • 批准号:
    2026710
  • 财政年份:
    2020
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Biology-guided neural networks for discovering phenotypic traits
合作研究:生物学引导的神经网络发现表型特征
  • 批准号:
    1940247
  • 财政年份:
    2019
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Continuing Grant

相似国自然基金

多源不确定性数据驱动的深水集输系统一体化状态监测研究
  • 批准号:
    62373277
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于边界控制的网络化抛物型偏微分系统一致性研究
  • 批准号:
    62303163
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向公平性与准确性统一的推荐方法研究:基于模型偏差消解视角
  • 批准号:
    72301239
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向复杂场景的非线性多智能体系统一致性分层控制与优化
  • 批准号:
    62303393
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多精度目标追踪的多模态统一模型
  • 批准号:
    62302328
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Network for Investigation of Delirium: Unifying Scientists (NIDUS)'s 9th-13th Annual Delirium Boot Camps: A Foundation for Future Exploration
谵妄调查网络:联合科学家 (NIDUS) 的第 9 至 13 届年度谵妄训练营:未来探索的基础
  • 批准号:
    10237513
  • 财政年份:
    2021
  • 资助金额:
    $ 59.57万
  • 项目类别:
The Network for Investigation of Delirium: Unifying Scientists (NIDUS)'s 9th-13th Annual Delirium Boot Camps: A Foundation for Future Exploration
谵妄调查网络:联合科学家 (NIDUS) 的第 9 至 13 届年度谵妄训练营:未来探索的基础
  • 批准号:
    10614489
  • 财政年份:
    2021
  • 资助金额:
    $ 59.57万
  • 项目类别:
The Network for Investigation of Delirium: Unifying Scientists (NIDUS)'s 9th-13th Annual Delirium Boot Camps: A Foundation for Future Exploration
谵妄调查网络:联合科学家 (NIDUS) 的第 9 至 13 届年度谵妄训练营:未来探索的基础
  • 批准号:
    10378656
  • 财政年份:
    2021
  • 资助金额:
    $ 59.57万
  • 项目类别:
Unifying Mechanisms of Neurological Disorders: Scientific, Translational, and Cli
神经系统疾病的统一机制:科学、转化和气候
  • 批准号:
    7920278
  • 财政年份:
    2010
  • 资助金额:
    $ 59.57万
  • 项目类别:
Collaborative Research: Matrix-Model Machine Learning: Unifying Machine Learning and Scientific Computing
协作研究:矩阵模型机器学习:统一机器学习和科学计算
  • 批准号:
    0830780
  • 财政年份:
    2008
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了