EAGER: Collaborative Research:III: Exploring Physics Guided Machine Learning for Accelerating Sensing and Physical Sciences

EAGER:协作研究:III:探索物理引导机器学习以加速传感和物理科学

基本信息

项目摘要

As machine learning (ML) continues to revolutionize the commercial space including vision, speech, andtext recognition, there is a huge anticipation in the scientific community to unlock the power of ML foraccelerating scientific discovery. However, black-box ML models, which rely solely on training data andignore existing scientific knowledge have met with limited success in scientific problems, particularlywhen labeled data is limited, sometimes even leading to spectacular failures. This is because the blackbox ML models are susceptible to learning spurious relationships that do not generalize well outside thedata they are trained for. The emerging paradigm of physics-guided machine learning (PGML), whichleverages the unique ability of ML algorithms to automatically extract patterns and models from data withguidance of the knowledge accumulated in physics (or scientific theories), aims to address the challengesfaced by black box ML in scientific applications.For data science, PGML has the potential to transform ML beyond black-box applications by enablingsolutions that generalize well even on unseen input-output distributions that are different from thoseencountered during training, by anchoring ML methods with the scientific body of knowledge. PGML makes a distinctdeparture from the conventional view that physics-based models and ML models are developed inisolation but seldom mixed together. The proposed project is fundamentally different from existing bodyof research that attempts to combine ML and domain sciences, e.g., by making use of domain-specificknowledge in ML algorithms in simplistic ways, or making use of data in the physics-based modelingprocess albeit without allowing data to change the functional forms of existing physics-based models. The tight interplay between data science and the domains of physics and sensing in the project lends itselfnaturally to diverse education activities that complement the research tasks outlined by our team. Over theduration of this one-year project, the team will develop an integrative course at the graduate level on "MLmeets Physics", which explores topical, emerging themes in this interdisciplinary area. Offerings of thecourse will draw upon course modules shared between the four universities, such as shared guest videosand case studies. The physics department at BU has a well-developed "Physics Outreach Project" thatannually performs science exhibitions for elementary schools in Binghamton metropolitan area, for whichthe team will create a new exhibition about neural networks and ML. In follow-on work, similar outreachevents will be replicated at schools (Robinson Middle School in Lowell and Metro STEM Middle Schoolin Columbus). The PIs are committed to increasing the diversity of involvement at various levels of thetraining ecosystem impacted by this project, and have planned various coordinated broader impactactivities for inclusion of female and underrepresented minority students as well as faculty.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着机器学习 (ML) 继续给视觉、语音和文本识别等商业领域带来革命性的变化,科学界对释放 ML 的力量以加速科学发现抱有巨大的期望。然而,仅依赖训练数据而忽略现有科学知识的黑盒机器学习模型在科学问题上取得的成功有限,特别是当标记数据有限时,有时甚至会导致巨大的失败。这是因为黑盒 ML 模型很容易学习虚假关系,这些关系在它们所训练的数据之外无法很好地泛化。新兴的物理引导机器学习(PGML)范式利用机器学习算法的独特能力,以物理学(或科学理论)积累的知识为指导,自动从数据中提取模式和模型,旨在解决黑盒机器学习面临的挑战在科学应用中。对于数据科学,PGML 有潜力将 ML 转变为黑盒应用之外的领域,因为即使在与训练期间遇到的不可见的输入输出分布不同的情况下,PGML 也能很好地泛化。将机器学习方法与科学知识体系结合起来。 PGML 与传统观点截然不同,传统观点认为基于物理的模型和 ML 模型是独立开发的,但很少混合在一起。拟议的项目与试图将机器学习和领域科学结合起来的现有研究机构有根本的不同,例如,通过以简单的方式在机器学习算法中使用特定领域的知识,或者在基于物理的建模过程中使用数据,尽管不允许使用数据改变现有基于物理的模型的功能形式。该项目中数据科学与物理和传感领域之间的紧密相互作用自然适合多样化的教育活动,这些活动补充了我们团队概述的研究任务。在这个为期一年的项目期间,该团队将开发一门关于“机器学习与物理学”的研究生综合课程,该课程探索这个跨学科领域的热门、新兴主题。该课程将利用四所大学共享的课程模块,例如共享的客座视频和案例研究。波士顿大学物理系有一个完善的“物理推广项目”,每年为宾厄姆顿都会区的小学举办科学展览,团队将为此创建一个关于神经网络和机器学习的新展览。在后续工作中,类似的外展活动将在学校(洛厄尔的罗宾逊中学和哥伦布的 Metro STEM 中学)进行复制。 PI 致力于增加受该项目影响的培训生态系统各个层面的参与多样性,并计划了各种协调更广泛的影响活动,以包容女性和代表性不足的少数族裔学生以及教师。该奖项反映了 NSF 的法定使命,并已通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quadratic Residual Networks: A New Class of Neural Networks for Solving Forward and Inverse Problems in Physics Involving PDEs
二次残差网络:一类新型神经网络,用于解决涉及偏微分方程的物理中的正向和逆向问题
  • DOI:
    10.1137/1.9781611976700.76
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Bu;A. Karpatne
  • 通讯作者:
    A. Karpatne
PID-GAN: A GAN Framework based on a Physics-informed Discriminator for Uncertainty Quantification with Physics
PID-GAN:基于物理信息判别器的 GAN 框架,用于物理不确定性量化
CoPhy-PGNN: Learning Physics-guided Neural Networks with Competing Loss Functions for Solving Eigenvalue Problems
CoPhy-PGNN:学习具有竞争损失函数的物理引导神经网络来解决特征值问题
  • DOI:
    10.1145/3530911
  • 发表时间:
    2020-07-02
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Mohannad Elhamod;Jie Bu;Christopher N. Singh;Matthew Redell;Abantika Ghosh;V. Podolskiy;Wei‐Cheng Lee;A. Karpatne
  • 通讯作者:
    A. Karpatne
Learning Compact Representations of Neural Networks using DiscriminAtive Masking (DAM)
使用判别掩蔽 (DAM) 学习神经网络的紧凑表示
  • DOI:
    10.1021/cm970825g
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Jie Bu;Arka Daw;M. Maruf;A. Karpatne
  • 通讯作者:
    A. Karpatne
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anuj Karpatne其他文献

Anuj Karpatne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anuj Karpatne', 18)}}的其他基金

CAREER: Unifying Scientific Knowledge with Machine Learning for Forward, Inverse, and Hybrid Modeling of Scientific Systems
职业:将科学知识与机器学习相结合,对科学系统进行正向、逆向和混合建模
  • 批准号:
    2239328
  • 财政年份:
    2023
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: MRA: Advancing process understanding of lake water quality to macrosystem scales with knowledge-guided machine learning
合作研究:MRA:通过知识引导的机器学习将湖泊水质的过程理解推进到宏观系统尺度
  • 批准号:
    2213550
  • 财政年份:
    2022
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
III:Medium:Physics-guided Machine Learning for Predicting Cell Trajectories, Shapes, and Interactions in Complex Dynamic Environments
III:中:物理引导机器学习,用于预测复杂动态环境中的细胞轨迹、形状和相互作用
  • 批准号:
    2107332
  • 财政年份:
    2021
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Biology-guided neural networks for discovering phenotypic traits
合作研究:生物学引导的神经网络发现表型特征
  • 批准号:
    1940247
  • 财政年份:
    2019
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了