Collaborative Research: SCIPE: Enhancing the Transdisciplinary Research Ecosystem for Earth and Environmental Science with Dedicated Cyber Infrastructure Professionals

合作研究:SCIPE:通过专门的网络基础设施专业人员增强地球与环境科学的跨学科研究生态系统

基本信息

  • 批准号:
    2321009
  • 负责人:
  • 金额:
    $ 99.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-11-01 至 2027-10-31
  • 项目状态:
    未结题

项目摘要

In this age of big data, cutting-edge Earth and Environmental Science research increasingly requires Cyber Infrastructure (CI) expertise. Prior advances, including the prediction of climate change, the role and importance of biodiversity, and changes in the condition of oceans and fisheries, were all underpinned by the collection, organization, and analysis of massive quantities of data derived from advanced sensors and models. Increased data throughput in analysis pipelines has spurred advances in artificial intelligence, forecasting models, and reliance on scientific computing. Maintaining these cutting-edge research programs requires constant CI innovation, including collaboration with experts trained to innovate in findable, accessible, interoperable, and reusable data and analysis. Identifying solutions to the world’s most pressing environmental problems requires that CI experts collaborate with researchers, science communicators, environmental agencies, and nongovernmental organizations. This project will create this network through development of a CyberCollaboratory, where interdisciplinary groups across institutions can collaborate with Cyber Infrastructure Professionals (CIPs), leveraging high-performance and cloud computing, open data science, and geospatial analytics, in facilitated, scalable, and cyber-supported virtual and in-person spaces. The CyberCollaboratory is a collaboration between the University of Maryland Center for Environmental Science (UMCES) and the University of Maryland, Baltimore County (UMBC). The project will have a broad impact on the research-facing CIP community, offer opportunities for training diverse groups of students from UMBC Information Systems to engage with applied Earth and Environmental Science research, and support these professionals as they grow into a foundational component of the environmental research, policy, and management community. We will develop a knowledge portal that provides opportunities to extend the impact of this project beyond UMCES and UMBC to academic partnerships elsewhere that are also engaging in CI professionalization. This project is developing and supporting a team of CIPs that integrates seamlessly with our diverse research enterprise. Through an inter-institutional partnership between UMCES and UMBC Information Systems the project will accelerate the development of open data science, software tools, integrated ecosystem models, and machine learning applications; engage faculty, students, and environmental management agencies (and other stakeholders) in co-development research training; and staff a ticket-based help desk. UMCES and UMBC will collaboratively: (1) Build a diverse workforce of CIPs responsive to the needs of the multi-institutional and stakeholder-inclusive environmental research community to which UMCES and UMBC contribute; (2) Develop a hub, with physical and virtual components, that facilitates interactions among domain researchers, CIPs, and other stakeholders, including opportunities for CI skills training and team science training; and (3) Establish the CyberCollaboratory as a robust and pervasive source for CI expertise and collaboration. The CI team will adapt to evolving research priorities enabled by the co-development process but will initially support four active projects at UMBC and UMCES: (a) Harnessing data and model revolution in the polar regions (iHARP); (b) Developing a nutrient information system for agricultural sustainability; (c) Ecological forecasting for evaluating restoration actions in estuaries, and (d) Understanding the ecological consequences of expanding offshore wind energy generation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个大数据时代,尖端的地球和环境科学研究越来越需要网络基础设施(CI)专业知识。先前的进步,包括对气候变化的预测,生物多样性的作用和重要性以及海洋和渔业状况的变化,都受到收集,组织的分析以及大量来自高级传感器和模型的数据的分析的基础。分析管道中的数据吞吐量增加刺激了人工智能,预测模型和对科学计算的缓解的进步。维护这些尖端的研究计划需要持续的CI创新,包括与接受创新的专家合作,可访问,可访问,可互操作和可重复使用的数据和分析。确定解决世界上最紧迫的环境问题的解决方案要求CI专家与研究人员,科学沟通者,环境机构和非政府组织合作。该项目将通过开发网络协作来创建该网络,该机构的跨学科小组可以与网络基础架构专业人员(CIPS)合作,利用高性能和云计算,开放数据科学以及在准备,可扩展的,可扩展的虚拟和支持虚拟的虚拟和属于网络的空间。网络合作组织是马里兰州环境科学中心(UMCE)与马里兰州大学巴尔的摩县(UMBC)之间的合作。该项目将对面向研究的CIP社区产生广泛的影响,为培训来自UMBC信息系统的潜水员群体,以与应用地球和环境科学研究互动,并在这些专业人员成长为环境研究,政策和管理社区的基础上支持这些专业人员。我们将开发一个知识门户网站,该门户提供机会将该项目的影响扩展到UMCE和UMBC之外,并将其从事CI专业化的其他地方的学术合作伙伴关系。该项目正在开发和支持一个与我们的潜水员研究企业无缝集成的CIP团队。通过UMCES和UMBC信息系统之间的机构间伙伴关系,该项目将加速开放数据科学,软件工具,集成生态系统模型和机器学习应用程序的开发;让教师,学生和环境管理机构(以及其他利益相关者)参与共同开发研究培训;和工作人员基于票证的服务台。 UMCES和UMBC将进行合作:(1)建立一个响应多机构和利益相关的环境研究社区需求的CIPS的潜水员劳动力,UMCES和UMBC对此做出了贡献; (2)开发一个带有物理和虚拟组件的枢纽,促进了域研究人员,CIPS和其他利益相关者之间的互动,包括进行CI技能培训和团队科学培训的机会; (3)建立网络处理作为CI专业知识与协作的强大而普遍的来源。 CI团队将适应共同开发过程实现的不断发展的研究优先级,但最初将支持UMBC和UMCES的四个活跃项目:(a)利用极地地区的数据和模型革命(IHARP); (b)为农业可持续性开发营养信息系统; (c)评估河口恢复行动的生态预测,以及(d)了解扩大海上风能产生的生态后果。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响标准通过评估来评估的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vandana Janeja其他文献

Adopting Foundational Data Science Curriculum with Diverse Institutional Contexts
采用具有不同机构背景的基础数据科学课程
Understanding the Role of 2019 Amazon Wildfires on Antarctic Sea Ice Extent Using Data Science Approaches
使用数据科学方法了解 2019 年亚马逊野火对南极海冰范围的影响
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sudip Chakraborty;Chhaya Kulkarni;Atefeh Jabeli;Akila Sampath;Gehan Boteju;Jianwu Wang;Vandana Janeja
  • 通讯作者:
    Vandana Janeja

Vandana Janeja的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vandana Janeja', 18)}}的其他基金

EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Improving Human Discernment of Audio Deepfakes via Multi-level Information Augmentation
EAGER:DCL:SaTC:实现跨学科合作:通过多级信息增强提高人类对音频深赝品的识别能力
  • 批准号:
    2210011
  • 财政年份:
    2022
  • 资助金额:
    $ 99.97万
  • 项目类别:
    Standard Grant
HDR Institute: HARP- Harnessing Data and Model Revolution in the Polar Regions
HDR 研究所:HARP——利用极地地区的数据和模型革命
  • 批准号:
    2118285
  • 财政年份:
    2022
  • 资助金额:
    $ 99.97万
  • 项目类别:
    Cooperative Agreement

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SCIPE: Enhancing the Transdisciplinary Research Ecosystem for Earth and Environmental Science with Dedicated Cyber Infrastructure Professionals
合作研究:SCIPE:通过专门的网络基础设施专业人员增强地球与环境科学的跨学科研究生态系统
  • 批准号:
    2321008
  • 财政年份:
    2023
  • 资助金额:
    $ 99.97万
  • 项目类别:
    Standard Grant
Collaborative Research: SCIPE: Interdisciplinary Research Support Community for Artificial Intelligence and Data Sciences
合作研究:SCIPE:人工智能和数据科学跨学科研究支持社区
  • 批准号:
    2320952
  • 财政年份:
    2023
  • 资助金额:
    $ 99.97万
  • 项目类别:
    Standard Grant
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 99.97万
  • 项目类别:
    Standard Grant
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321090
  • 财政年份:
    2023
  • 资助金额:
    $ 99.97万
  • 项目类别:
    Standard Grant
Collaborative Research: SCIPE: Interdisciplinary Research Support Community for Artificial Intelligence and Data Sciences
合作研究:SCIPE:人工智能和数据科学跨学科研究支持社区
  • 批准号:
    2320953
  • 财政年份:
    2023
  • 资助金额:
    $ 99.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了