HDR Institute: HARP- Harnessing Data and Model Revolution in the Polar Regions

HDR 研究所:HARP——利用极地地区的数据和模型革命

基本信息

  • 批准号:
    2118285
  • 负责人:
  • 金额:
    $ 1300万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Climate-change induced loss of polar ice sheets impacts many lives and increases coastal flooding by rising sea level and affecting ocean circulation. However, it remains difficult to accurately predict how quickly the ice sheets will continue to shrink. In particular, we are still challenged by a limited understanding of transdisciplinary processes that determine ice sheet change, such as the role of subglacial topography and ice-atmosphere-ocean interactions. Timely investment in machine learning and data intensive research can revolutionize the way that scientists currently answer questions related to ice dynamics. This HDR Institute serves as a research hub where experts in data science, Arctic and Antarctic science, and cyberinfrastructure in academia, government, and private sectors come together to develop transformative and integrative data science solutions to reduce uncertainties in projecting future sea-level rise and climate change. i-HARP researchers investigate the potential of novel physics-aware data science and machine learning approaches to address national priorities and challenges on Navigating the New Arctic, climate change, and sea-level rise.The HDR Institute aims to harness massive heterogeneous, noisy, and discontinuous data in space and time and integrate data with numerical and physical models. Researchers at i-HARP are investigating novel data science techniques including deep generative adversarial networks, graph neural networks, meta learning, hybrid networks, physics-informed machine learning, causal artificial intelligence, data assimilation, spatiotemporal deep learning, and scalable algorithms. Due to the fundamental nature of data science problems that i-HARP addresses, the solutions can be translated to other disciplines such as remote sensing, medicine, and autonomous driving. Moreover, the convergence team champions multiple clusters of research-integrated educational initiatives, with a specific focus on facilitating cross-disciplinary collaborations, training next-generation multi-disciplinary researchers and engaging the public in scientific inquiry as related to climate change and data science. In partnership with related communities, i-HARP designs curricula, and offers hands-on community workshops, lecture series, conference tutorials, and training. i-HARP engages students from underrepresented minority groups by leveraging several existing organizations for underrepresented minorities.This project is part of the National Science Foundation's Big Idea activities in Harnessing the Data Revolution (HDR). This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Section for Antarctic Sciences and the Section for Arctic Sciences within the NSF Office of Polar Programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气候变化引起的极地冰盖损失影响了许多人的生命,并通过海平面上升和影响海洋环流增加了沿海洪水。然而,仍然很难准确预测冰盖将继续缩小的速度。特别是,我们仍然面临着对决定冰盖变化的跨学科过程的有限理解的挑战,例如冰下地形的作用和冰-大气-海洋相互作用。对机器学习和数据密集型研究的及时投资可以彻底改变科学家目前回答与冰动力学相关问题的方式。该 HDR 研究所是一个研究中心,数据科学、北极和南极科学以及学术界、政府和私营部门的网络基础设施专家齐聚一堂,开发变革性和综合性的数据科学解决方案,以减少预测未来海平面上升和下降的不确定性。气候变化。 i-HARP 研究人员研究了新颖的物理感知数据科学和机器学习方法的潜力,以解决新北极、气候变化和海平面上升方面的国家优先事项和挑战。HDR 研究所旨在利用大规模异构、嘈杂、以及空间和时间上的不连续数据,并将数据与数值和物理模型集成。 i-HARP 的研究人员正在研究新颖的数据科学技术,包括深度生成对抗网络、图神经网络、元学习、混合网络、物理信息机器学习、因果人工智能、数据同化、时空深度学习和可扩展算法。由于 i-HARP 解决的数据科学问题的基本性质,这些解决方案可以转化为其他学科,例如遥感、医学和自动驾驶。此外,融合团队倡导多个研究整合教育举措,特别注重促进跨学科合作、培训下一代多学科研究人员以及让公众参与与气候变化和数据科学相关的科学探究。 i-HARP 与相关社区合作设计课程,并提供实践社区研讨会、系列讲座、会议教程和培训。 i-HARP 通过利用几个针对代表性不足的少数群体的现有组织来吸引来自代表性不足的少数群体的学生。该项目是美国国家科学基金会利用数据革命 (HDR) 的大创意活动的一部分。 该奖项由先进网络基础设施办公室颁发,并得到 NSF 极地项目办公室南极科学科和北极科学科的共同支持。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mobile Augmented Reality System for Emergency Response
用于应急响应的移动增强现实系统
Metrics for the quality and consistency of ice layer annotations
冰层注释的质量和一致性指标
TSSA: two-step semi-supervised annotation for englacial radargrams on the Greenland ice sheet
TSSA:格陵兰冰盖冰川雷达图的两步半监督注释
Enhanced Deep Learning Super-Resolution for Bathymetry Data
Evaluating Machine Learning and Statistical Models for Greenland Subglacial Bed Topography
评估格陵兰冰下床地形的机器学习和统计模型
  • DOI:
    10.1109/icmla58977.2023.00097
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi, Katherine;Dewar, Angelina;Tabassum, Tartela;Lu, Jason;Chen, Ray;Alam, Homayra;Faruque, Omar;Li, Sikan;Morlighem, Mathieu;Wang, Jianwu
  • 通讯作者:
    Wang, Jianwu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vandana Janeja其他文献

Adopting Foundational Data Science Curriculum with Diverse Institutional Contexts
采用具有不同机构背景的基础数据科学课程

Vandana Janeja的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vandana Janeja', 18)}}的其他基金

Collaborative Research: SCIPE: Enhancing the Transdisciplinary Research Ecosystem for Earth and Environmental Science with Dedicated Cyber Infrastructure Professionals
合作研究:SCIPE:通过专门的网络基础设施专业人员增强地球与环境科学的跨学科研究生态系统
  • 批准号:
    2321009
  • 财政年份:
    2023
  • 资助金额:
    $ 1300万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Improving Human Discernment of Audio Deepfakes via Multi-level Information Augmentation
EAGER:DCL:SaTC:实现跨学科合作:通过多级信息增强提高人类对音频深赝品的识别能力
  • 批准号:
    2210011
  • 财政年份:
    2022
  • 资助金额:
    $ 1300万
  • 项目类别:
    Standard Grant

相似国自然基金

中国地方综合科研机构发展研究
  • 批准号:
    79060002
  • 批准年份:
    1990
  • 资助金额:
    3.0 万元
  • 项目类别:
    地区科学基金项目
中国地方综合科研机构组织优化模型及评价体系研究
  • 批准号:
    79060001
  • 批准年份:
    1990
  • 资助金额:
    2.5 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

The HIV and Alcohol Research center focused on Polypharmacy (HARP)
艾滋病毒和酒精研究中心专注于复方用药 (HARP)
  • 批准号:
    10887024
  • 财政年份:
    2021
  • 资助金额:
    $ 1300万
  • 项目类别:
The HIV and Alcohol Research center focused on Polypharmacy (HARP)
艾滋病毒和酒精研究中心专注于复方用药 (HARP)
  • 批准号:
    10304503
  • 财政年份:
    2021
  • 资助金额:
    $ 1300万
  • 项目类别:
The HIV and Alcohol Research center focused on Polypharmacy (HARP)
艾滋病毒和酒精研究中心专注于复方用药 (HARP)
  • 批准号:
    10686377
  • 财政年份:
    2021
  • 资助金额:
    $ 1300万
  • 项目类别:
Harvard/Brown Anxiety Research Project (HARP)
哈佛/布朗焦虑研究项目 (HARP)
  • 批准号:
    7394601
  • 财政年份:
    1995
  • 资助金额:
    $ 1300万
  • 项目类别:
Harvard/Brown Anxiety Research Project (HARP)
哈佛/布朗焦虑研究项目 (HARP)
  • 批准号:
    7173016
  • 财政年份:
    1995
  • 资助金额:
    $ 1300万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了