CAREER: Electro-Chemo-Mechanics of Multiscale Active Materials for Next-Generation Energy Storage
职业:用于下一代储能的多尺度活性材料的电化学力学
基本信息
- 批准号:2237990
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant will support integrated research, education, and outreach efforts to advance the field of mechanics for energy storage materials. In modern society, rechargeable batteries dominate the energy storage landscape, from portable electronics to electric vehicles. However, current microparticle-based battery technologies are insufficient for efficient, affordable, and safe energy storage. Advances in nanotechnology have spurred interest in deploying nanoparticles as battery electrodes. However, there are problems associated with nanoparticles that need to be overcome before the battery industry would use them over microparticles. A way forward lies in utilizing multiscale active materials to leverage the advantages of both worlds (micro and nano). The goal of this research is to gain fundamental knowledge of the interrelated electrical, chemical, and mechanical behaviors of multiscale active materials. These materials incorporate microscale particles with built-in nanoscale features. This project will develop an integrated atomistic simulation and machine learning framework to discover the optimal multiscale active materials for next-generation energy storage, which is urgently needed to advance the US economy, prosperity, welfare, and defense. The integrated outreach and educational activities will provide research opportunities for underrepresented community college students in partnership with the Louis Stokes Alliances for Minority Participation program. Workshops for elementary teacher trainees will provide STEM content to promote science among lower-grade students. Additionally, free online workshops related to this research will benefit the worldwide mechanics research community. Nanomaterials-based battery electrodes offer several advantages: high rate, power density, gravimetric capacity, superior fracture toughness, and fatigue resistance. However, the industry has been resistant to replace microstructured electrodes with nanostructured counterparts. Nanomaterials-based batteries have low volumetric capacity, reduced coulombic efficiency, and high cost. The transformative solution to address this issue lies in multiscale active materials. These materials can be either engineered (assembly of nanoparticles into microparticles) or natural (micrometer-scale materials naturally endowed with nanoscale tunnels). However, various computational and experimental challenges have impeded research progress in this area. This project aims to overcome these challenges through four integrated objectives: (i) studying the interfacial mechanics in engineered multiscale materials, (ii) determining electrode/electrolyte stability and solid electrolyte interface formation, (iii) investigating stress, fracture, and voltage variation within electrodes during charge/discharge cycles, and (iv) utilizing data from the first three objectives to train recently developed Modified High Dimensional Neural Networks for novel multiscale materials exploration. The Non-Local Long-Range Charge Transfer will be implemented for accurate charge calculation and correct force and stress analysis. Tasks will be experimentally validated with colleagues. The project will generate fundamental knowledge to advance the field of mechanics of energy storage materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该教师早期职业发展(CAREER)补助金将支持综合研究、教育和推广工作,以推进储能材料力学领域的发展。在现代社会中,从便携式电子产品到电动汽车,可充电电池在能源存储领域占据主导地位。然而,当前基于微粒的电池技术不足以实现高效、经济且安全的能量存储。纳米技术的进步激发了人们对将纳米颗粒用作电池电极的兴趣。然而,在电池行业使用纳米颗粒而不是微粒之前,需要克服与纳米颗粒相关的问题。前进的道路在于利用多尺度活性材料来利用两个世界(微米和纳米)的优势。这项研究的目标是获得多尺度活性材料相互关联的电气、化学和机械行为的基础知识。这些材料包含具有内置纳米级特征的微米级颗粒。该项目将开发一个集成的原子模拟和机器学习框架,以发现下一代储能的最佳多尺度活性材料,这是推动美国经济、繁荣、福利和国防所迫切需要的。综合外展和教育活动将与路易斯·斯托克斯少数族裔参与联盟计划合作,为代表性不足的社区学院学生提供研究机会。小学教师培训生讲习班将提供 STEM 内容,以促进低年级学生的科学发展。此外,与这项研究相关的免费在线研讨会将使全球力学研究界受益。 基于纳米材料的电池电极具有多种优点:高倍率、功率密度、重量容量、优异的断裂韧性和抗疲劳性。然而,业界一直抵制用纳米结构电极替代微结构电极。基于纳米材料的电池体积容量低、库仑效率低且成本高。解决这一问题的变革性解决方案在于多尺度活性材料。这些材料可以是工程材料(将纳米颗粒组装成微米颗粒)或天然材料(天然赋予纳米通道的微米级材料)。然而,各种计算和实验挑战阻碍了该领域的研究进展。该项目旨在通过四个综合目标克服这些挑战:(i)研究工程多尺度材料中的界面力学,(ii)确定电极/电解质稳定性和固体电解质界面形成,(iii)研究内部的应力、断裂和电压变化充电/放电循环期间的电极,以及(iv)利用前三个目标的数据来训练最近开发的用于新型多尺度材料探索的改进的高维神经网络。将实施非本地远程电荷转移,以实现精确的电荷计算和正确的力和应力分析。任务将与同事一起进行实验验证。该项目将产生基础知识,以推进储能材料力学领域的发展。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unlocking the Potential of Open-Tunnel Oxides: DFT-Guided Design and Machine Learning-Enhanced Discovery for Next- Generation Industry-Scale Battery Technologies
释放开放式隧道氧化物的潜力:DFT 引导设计和机器学习增强发现下一代工业规模电池技术
- DOI:10.1039/d4ya00014e
- 发表时间:2024-03
- 期刊:
- 影响因子:0
- 作者:Datta, Joy;Koratkar, Nikhil;Datta, Dibakar
- 通讯作者:Datta, Dibakar
Electro-Chemo-Mechanical Modeling of Multiscale Active Materials for Next-Generation Energy Storage: Opportunities and Challenges
下一代储能多尺度活性材料的电化学机械建模:机遇与挑战
- DOI:10.1007/s11837-023-06335-y
- 发表时间:2024-01
- 期刊:
- 影响因子:2.6
- 作者:Datta; Dibakar
- 通讯作者:Dibakar
Effects of Graphene Interface on Potassiation in a Graphene–Selenium Heterostructure Cathode for Potassium-Ion Batteries
石墨烯界面对钾离子电池石墨烯-硒异质结构阴极钾化的影响
- DOI:10.1021/acsaem.3c00989
- 发表时间:2023-08
- 期刊:
- 影响因子:6.4
- 作者:Sharma, Vidushi;Datta, Dibakar
- 通讯作者:Datta, Dibakar
Exploring Thermal Transport in Electrochemical Energy Storage Systems Utilizing Two-Dimensional Materials: Prospects and Hurdles
利用二维材料探索电化学储能系统中的热传输:前景和障碍
- DOI:10.1615/annualrevheattransfer.2023049365
- 发表时间:2023-09-05
- 期刊:
- 影响因子:0
- 作者:Dibakar Datta;Eon Soo Lee
- 通讯作者:Eon Soo Lee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dibakar Datta其他文献
Effect of crack length and orientation on the mixed-mode fracture behavior of graphene
裂纹长度和取向对石墨烯混合模式断裂行为的影响
- DOI:
10.1016/j.eml.2015.08.005 - 发表时间:
2015 - 期刊:
- 影响因子:4.7
- 作者:
Dibakar Datta;Siva P.V. Nadimpalli;Yinfeng Li;Vivek B. Shenoy - 通讯作者:
Vivek B. Shenoy
Anomalous mechanical characteristics of graphene with tilt grain boundaries tuned by hydrogenation
通过氢化调节具有倾斜晶界的石墨烯的异常机械特性
- DOI:
10.1016/j.carbon.2015.04.019 - 发表时间:
2015 - 期刊:
- 影响因子:10.9
- 作者:
Yinfeng Li;Dibakar Datta;Zhonghua Li - 通讯作者:
Zhonghua Li
Variation in the interface strength of silicon with surface engineered Ti3C2MXenes
- DOI:
10.1039/d0cp06190e - 发表时间:
2021-02 - 期刊:
- 影响因子:3.3
- 作者:
Vidushi Sharma;Dibakar Datta - 通讯作者:
Dibakar Datta
Mechanical properties of graphene grain boundary and hexagonal boron nitride lateral heterostructure with controlled domain size
可控畴尺寸的石墨烯晶界和六方氮化硼横向异质结构的力学性能
- DOI:
10.1016/j.commatsci.2016.06.026 - 发表时间:
2017 - 期刊:
- 影响因子:3.3
- 作者:
Anran Wei;Yinfeng Li;Dibakar Datta;Hui Guo;Ziang Lv - 通讯作者:
Ziang Lv
Thermal characteristics of graphene nanoribbons endorsed by surface functionalization
表面功能化支持的石墨烯纳米带的热特性
- DOI:
10.1016/j.carbon.2016.11.067 - 发表时间:
2017 - 期刊:
- 影响因子:10.9
- 作者:
Yinfeng Li;Anran Wei;Dibakar Datta - 通讯作者:
Dibakar Datta
Dibakar Datta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dibakar Datta', 18)}}的其他基金
Collaborative Research: Fundamental Study of Niobium Tungsten Oxide Anodes for High-Performance Aqueous Batteries
合作研究:高性能水系电池用铌钨氧化物阳极的基础研究
- 批准号:
2126180 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Roll-to-Roll Atomic Layer Deposition of Selenium-based Battery Cathodes
GOALI/合作研究:硒基电池阴极的卷对卷原子层沉积
- 批准号:
1911900 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
协同靶向透明质酸纳米联合化疗药物复合物的制备与应用及其疗效的PET评估
- 批准号:81771869
- 批准年份:2017
- 资助金额:55.0 万元
- 项目类别:面上项目
治疗前FDG-PET图像纹理分析预测局部晚期食管癌放化疗疗效的模型构建及生物学基础
- 批准号:81572970
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
IGF-1R靶向PET-MRI探针对结直肠癌化疗疗效评价及光热/化疗协同增敏作用的实验研究
- 批准号:81571737
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
CD147介导耐药胰腺癌干细胞的化疗抵抗性及其线粒体机制
- 批准号:31571469
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
双靶向透明质酸纳米化疗药物的研制及PET疗效评价
- 批准号:81501506
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Nano Electro-chemo-mechanics and Interfacial Stability in All-solid-state Lithium Battery
职业:全固态锂电池中的纳米电化学力学和界面稳定性
- 批准号:
1942554 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Electro-Chemo-Mechanics of Li and Na Metal: Toward Dendrite- and Damage-Free Metallic Anodes of Rechargeable Batteries
职业:锂和钠金属的电化学力学:研究可充电电池的无枝晶和无损伤金属阳极
- 批准号:
1944674 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Electro-Chemo-Mechanics of Polymer/Active Material Interface Fracture
职业:聚合物/活性材料界面断裂的电化学力学
- 批准号:
2026717 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: The Role of Heterogeneities in Electro-Chemo-Mechanics of Electrodes and Interfaces
职业:异质性在电极和界面电化学力学中的作用
- 批准号:
1943946 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Electro-Chemo-Mechanics of Polymer/Active Material Interface Fracture
职业:聚合物/活性材料界面断裂的电化学力学
- 批准号:
1652409 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant