CAREER: Towards Hierarchical and Provably Safe Control for Learning-Enabled Autonomous Systems

职业:为支持学习的自主系统实现分层且可证明安全的控制

基本信息

  • 批准号:
    2237850
  • 负责人:
  • 金额:
    $ 60.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-01 至 2028-02-29
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development Program (CAREER) grant will fund research that enhances the reliability, trustworthiness, and societal acceptance of autonomous systems that rely on machine learning-enabled technologies, thereby promoting the progress of science, and advancing the national prosperity and welfare. Autonomous robotic systems, such as self-driving cars and drones, are shaping the nation's future insofar as the transportation, logistics, and service segments of the economy are concerned. Artificial neural networks have become an indispensable component of modern autonomous systems, especially in their perception and control pipelines. However, neural networks are complex, difficult to analyze, and sensitive to input perturbations or adversarial attacks. This renders their rigorous analysis and design very challenging. Thus, despite the continued optimism and tremendous technological progress in recent years, truly autonomous systems remain elusive because of outstanding safety and reliability concerns. This project overcomes these concerns by establishing a rigorous methodological framework and efficient algorithms for the analysis, verification, motion planning, and control design of safety-critical dynamic systems with learning-enabled components. It demonstrates how this framework enables provable performance guarantees for safe and reliable operation. Through close integration of research, education, and outreach, the project aims to leverage knowledge discovery to stimulate teaching and learning, use inspired teaching to encourage excitement in research, and make newly generated knowledge accessible to the public. This is accomplished through active learning-based design of a course on safety control in robotics, by engaging students from underrepresented groups in research and organizing K-12 summer workshops with hands-on robotics activities, and by increasing public literacy, awareness, and trust in safety-related technologies for autonomous systems.This research aims to develop the foundations of a mathematically rigorous framework for the multi-rate and provably safe motion planning and control of autonomous systems with neural network components. It achieves this aim by investigating constrained zonotope- and hybrid zonotope-based algorithms for computing over-approximated reachable sets for neural feedback systems with a tunable trade-off between computational efficiency and approximation accuracy; robust quadratic program-based methods for designing provably safe, periodic event-triggered tracking controllers; second-order cone program-based trajectory planning methods for neural feedback systems with continuous-time safety guarantees; and provably safe multi-rate planning and control algorithms with an assume-guarantee contract between the planning and tracking layers. Verification and validation of the theoretical results will be performed using high-fidelity vehicle dynamics software simulations and with physical experiments on two lab-based robotic platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该教师早期职业发展计划 (CAREER) 拨款将资助研究,以提高依赖机器学习技术的自主系统的可靠性、可信度和社会接受度,从而促进科学进步,促进国家繁荣和福利。就经济的交通、物流和服务领域而言,自动驾驶汽车和无人机等自主机器人系统正在塑造国家的未来。人工神经网络已成为现代自主系统不可或缺的组成部分,特别是在其感知和控制管道中。然而,神经网络很复杂,难以分析,并且对输入扰动或对抗性攻击敏感。这使得他们严格的分析和设计非常具有挑战性。因此,尽管近年来人们持续乐观并取得了巨大的技术进步,但由于突出的安全性和可靠性问题,真正的自主系统仍然难以实现。该项目通过建立严格的方法框架和有效的算法来解决这些问题,用于分析、验证、运动规划和具有学习功能的组件的安全关键动态系统的控制设计。它演示了该框架如何为安全可靠的操作提供可证明的性能保证。通过研究、教育和推广的紧密结合,该项目旨在利用知识发现来刺激教学,利用启发式教学来鼓励研究的热情,并使新产生的知识向公众开放。这是通过基于主动学习的机器人安全控制课程设计、让弱势群体的学生参与研究、组织 K-12 夏季研讨会以及机器人实践活动以及提高公众素养、意识和信任来实现的。这项研究旨在为具有神经网络组件的自主系统的多速率和可证明安全的运动规划和控制奠定数学严格框架的基础。它通过研究基于约束区域和混合区域的算法来实现这一目标,该算法用于计算神经反馈系统的过度近似可达集,并在计算效率和近似精度之间进行可调权衡;基于稳健二次程序的方法,用于设计可证明安全的、周期性事件触发的跟踪控制器;基于二阶锥体程序的具有连续时间安全保证的神经反馈系统轨迹规划方法;以及可证明安全的多速率规划和控制算法,以及规划层和跟踪层之间的假设保证合同。理论结果的验证和验证将使用高保真车辆动力学软件模拟和两个基于实验室的机器人平台上的物理实验进行。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Safe Control of Euler-Lagrange Systems with Limited Model Information
模型信息有限的欧拉-拉格朗日系统的安全控制
Backward Reachability Analysis of Neural Feedback Systems Using Hybrid Zonotopes
使用混合区域位的神经反馈系统的后向可达性分析
  • DOI:
    10.1109/lcsys.2023.3289572
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Zhang, Yuhao;Zhang, Hang;Xu, Xiangru
  • 通讯作者:
    Xu, Xiangru
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiangru Xu其他文献

Control Barrier Function Based Quadratic Programs with Application to Automotive Safety Systems
基于控制屏障函数的二次规划及其在汽车安全系统中的应用
  • DOI:
  • 发表时间:
    2016-09-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Ames;Xiangru Xu;J. Grizzle;P. Tabuada
  • 通讯作者:
    P. Tabuada
Disturbance Observer-based Robust Control Barrier Functions
基于扰动观测器的鲁棒控制屏障函数
Robust Stability of Neural Feedback Systems with Interval Matrix Uncertainties
具有区间矩阵不确定性的神经反馈系统的鲁棒稳定性
  • DOI:
    10.48550/arxiv.2311.15109
  • 发表时间:
    2023-11-25
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuhao Zhang;Xiangru Xu
  • 通讯作者:
    Xiangru Xu
Cloning and Functional Analysis of cDNAs with Open Reading Frames for 300 Previously Undefined Genes Expressed in CD 34 + Hematopoietic Stem / Progenitor Cells
CD 34 造血干细胞/祖细胞中表达的 300 个先前未定义基因的具有开放阅读框的 cDNA 的克隆和功能分析
  • DOI:
    10.1016/j.omtn.2024.102158
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qing;M. Ye;Xin;S. Ren;Meng Zhao;Chun;G. Fu;Yu;Hui;G. Lu;Ming Zhong;Xiangru Xu;Ze;Ji‐Wang Zhang;J. Tao;Qiuhua Huang;Jun Zhou;G. Hu;J. Gu;Saijuan Chen;Zhu Chen
  • 通讯作者:
    Zhu Chen
Transformation and stabilization of straw residue carbon in soil affected by soil types, maize straw addition and fertilized levels of soil
土壤类型、玉米秸秆添加量和土壤施肥水平影响土壤秸秆残碳转化与稳定
  • DOI:
    10.1016/j.geoderma.2018.08.018
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Xiangru Xu;Tingting An;Jiuming Zhang;Zhuhe Sun;Sean Schaeffer;Jingkuan Wang
  • 通讯作者:
    Jingkuan Wang

Xiangru Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

复合材料分层损伤的超声导波对向混频定位研究
  • 批准号:
    12304515
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
壁湍流中展向旋转与法向分层效应的相似性研究
  • 批准号:
    12302284
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热力分层对湖库浮游植物垂向结构的影响机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
泥沙异重流垂向分层的转换机制和动力特性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
热力管道中热分层周向振荡的产生机理及诱发条件的研究
  • 批准号:
    52006067
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Towards efficient state estimation in wall-bounded flows: hierarchical adjoint data assimilation
实现壁界流中的有效状态估计:分层伴随数据同化
  • 批准号:
    2332057
  • 财政年份:
    2023
  • 资助金额:
    $ 60.36万
  • 项目类别:
    Standard Grant
Advanced measurement for unveiling hierarchical quasiparticles towards renovating molecular materials research
揭示分级准粒子的先进测量,以革新分子材料研究
  • 批准号:
    23H05461
  • 财政年份:
    2023
  • 资助金额:
    $ 60.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
CAREER: Studies of Chalcogen Bonding-Mediated Assembly towards Porous Crystalline Frameworks, Hierarchical Assemblies, and Multicomponent Materials
职业:硫族键介导的多孔晶体框架组装、分级组装和多组分材料的研究
  • 批准号:
    2143623
  • 财政年份:
    2022
  • 资助金额:
    $ 60.36万
  • 项目类别:
    Continuing Grant
CAREER: Towards Efficient and Fast Hierarchical Federated Learning in Heterogeneous Wireless Edge Networks
职业:在异构无线边缘网络中实现高效快速的分层联邦学习
  • 批准号:
    2145031
  • 财政年份:
    2022
  • 资助金额:
    $ 60.36万
  • 项目类别:
    Continuing Grant
Meso-scale liquid crystal/polymer phase separation with anisotropic and hierarchical nonuniform structures and development of thermoresponsive light control devices
具有各向异性和分层非均匀结构的介观液晶/聚合物相分离以及热响应光控器件的开发
  • 批准号:
    19K03779
  • 财政年份:
    2019
  • 资助金额:
    $ 60.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了