Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
基本信息
- 批准号:2319492
- 负责人:
- 金额:$ 115.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
It is critical for people around the world to be able to learn new skills and information throughout their lives, although often people differ in their proficiency to do so. For example, while all adults are capable of some extent of non-native speech sound category learning with optimized behavioral training paradigms, some people achieve high levels of proficiency with extensive training, while many others fail to overcome fundamental challenges. Prior work has attempted to explain individual differences in learning using static "traits" that are thought to change very little over time - e.g., working memory span, IQ, and musical ability. However, recent work has suggested that a major source of variability is the constantly changing "states" of the brain during learning. Scientists are at a unique moment where advances in cognitive and systems neuroscience, computational behavioral modeling, and neuromodulation (the ability to manipulate neural systems safely and non-invasively in humans) will allow us to achieve a unified, cohesive, neuroscience-based model of learning that explains individual differences. Using information gleaned from a series of studies in both human and animal models, this project seeks to develop a non-invasive device that integrates attention (pupil dilation) and its modulation (vagal nerve stimulation) toward the goal of problem solving, in this case second-language learning. Success in this endeavor will enable the development of novel neurotechnologies and training regimens that will make challenging tasks like second language acquisition accessible to wide array of underserved and overlooked communities in education.The main goal of this study is to take an integrative approach to understanding an underappreciated set of critical factors that are hypothesized to underly individual variability in perceptual learning: task-related dynamic neural states. Subcortical arousal systems (e.g., noradrenergic, cholinergic, and dopaminergic) have a substantial impact on cortical circuit function during distinct phases of a learning task, including pre-stimulus periods, stimulus encoding, and feedback monitoring. By studying each of these task phases at multiple scales, from specific neuromodulators and single neurons in mice, to population neurophysiology and dynamic behavior in mice and humans, it will be possible to explain substantially more variability in learning than is currently possible. Furthermore, researchers will leverage a neuromodulation approach, vagus nerve stimulation (VNS), to regulate the activity of these neuromodulatory systems and help improve learning performance in a targeted and highly dynamic way. Using a multi-modal, cross-species (humans and rodents) approach, the researchers propose a conceptual framework where rapidly changing and high dimensional neural states have dynamics that cut across traditional boundaries of human trait categories, such as memory capacity and perceptual experience, and neuromodulatory system functions, such as arousal, attention, and reward signaling. This multi-scale approach is all tied together with concurrent measurement of pupil-linked arousal, population neural dynamics, and trial-by-trial behavioral performance. This work will have transformative implications for understanding why individuals struggle to learn important skills in adulthood, and will advance the development of simple, cheap, and safe tools for enhancing performance and leveling the playing field across diverse communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对于世界各地的人们来说,能够在一生中学习新技能和信息至关重要,尽管人们的熟练程度往往有所不同。例如,尽管所有成年人都具有一定程度的非本地语音声音类别学习,并具有优化的行为培训范例,但有些人通过广泛的培训获得了高水平的水平,而许多其他人则无法克服基本挑战。先前的工作试图使用静态的“特质”来解释学习方面的个体差异,这些“特质”被认为随着时间的流逝而变化很小,例如工作记忆跨度,智商和音乐能力。但是,最近的工作表明,可变性的主要来源是学习过程中大脑的“状态”不断变化。科学家处于一个独特的时刻,在认知和系统神经科学,计算行为建模和神经调节的进步(在人类中安全和非侵入性操纵神经系统的能力)将使我们能够实现一种统一的,具有凝聚力的,神经科学的学习模型来解释个人差异。使用从人类和动物模型中的一系列研究中收集的信息,该项目试图开发一种非侵入性装置,将注意力集成(瞳孔扩张)及其调节(迷走神经刺激),以解决问题解决问题,在这种情况下,第二语言学习。 Success in this endeavor will enable the development of novel neurotechnologies and training regimens that will make challenging tasks like second language acquisition accessible to wide array of underserved and overlooked communities in education.The main goal of this study is to take an integrative approach to understanding an underappreciated set of critical factors that are hypothesized to underly individual variability in perceptual learning: task-related dynamic neural states.皮质下唤醒系统(例如,去甲肾上腺素能,胆碱能和多巴胺能)对学习任务的不同阶段的皮质回路功能具有重大影响,包括刺激时期,刺激编码和反馈监测。通过在多个尺度上研究这些任务阶段的每个任务阶段,从小鼠的特定神经调节剂和单个神经元,到小鼠和人类的人群神经生理学和动态行为,将有可能与当前可能更大的学习可变性。此外,研究人员将利用神经调节方法,迷走神经刺激(VNS)来调节这些神经调节系统的活性,并以有针对性且高度动态的方式帮助提高学习绩效。研究人员使用多模式的跨物种(人类和啮齿动物)方法,提出了一个概念框架,即迅速变化和高维神经状态具有跨越人类特质类别的传统边界的动力学,例如记忆能力和感知体验,以及神经调节性系统功能,例如唤醒,注意力,注意和奖励信号。这种多尺度方法都与同时测量学生相关的唤醒,种群神经动力学和逐审行为表现并存。这项工作将对为什么个人努力学习成年中的重要技能具有变革性的影响,并将促进简单,便宜和安全的工具的开发,以增强性能并提高跨不同社区的竞争环境。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和更广泛的影响来评估的支持,并被认为是值得的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew McGinley其他文献
Matthew McGinley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
多功能Bio-Ag NCs负载miR-200c靶向治疗耐药乳腺癌的研究
- 批准号:81871474
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:面上项目
养老设施无障碍环境的色彩设计理论与方法研究
- 批准号:51808382
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
具有超高分辨率的M-NCs/M-NPs A/SAM/MEA结构光寻址生化传感器及其生化量检测研究
- 批准号:61471207
- 批准年份:2014
- 资助金额:81.0 万元
- 项目类别:面上项目
大肠杆菌胞嘧碱通透酶CodB结构和功能的研究
- 批准号:31300618
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
铝通过Ca2+敏感的通路抑制Ⅰ组mGluR依赖LTD机制的研究
- 批准号:30972512
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 115.93万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
- 批准号:
2319619 - 财政年份:2023
- 资助金额:
$ 115.93万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
- 批准号:
2319406 - 财政年份:2023
- 资助金额:
$ 115.93万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319450 - 财政年份:2023
- 资助金额:
$ 115.93万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319451 - 财政年份:2023
- 资助金额:
$ 115.93万 - 项目类别:
Standard Grant