Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
基本信息
- 批准号:2319619
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern computers have revolutionized a wide range of applications that require fast, large-scale arithmetic operations. However, today’s computers still perform poorly on ‘cognitive’ tasks – tasks that require knowledge building, learning from past experiences, and anticipating the future. This project aims to design a new class of computer chips – ‘Cognitive Computing Machines (C2M)’ – by leveraging advances in recent understanding of how the brain represents and computes information and the crucial insight to map complex signal routing, characteristic of brain structures, onto three-dimensional integrated chips. The inspiration for the project is the hippocampus, a brain structure known to be critical for performing these cognitive tasks. The project will model and quantify key information processing steps in the hippocampus. These key hippocampal functions will then be embedded on to solid-state computing chips through state-of-the-art hardware design techniques. A hippocampal-aware, hardware-aware, algorithmic framework will augment the chip design efforts to enable online learning and decision-making in resource constrained environments. The project has potential disruptive applications in the field of robotics and autonomous systems spanning industrial, consumer and defense sectors. Each participating investigator and institution are committed to support a wide range of training and mentoring programs, with a focus on students from groups underrepresented in science. Trainees involved in the project will receive rare cross-disciplinary training in neuroscience and engineering, providing a foundation for a wide variety of career trajectories. Further, the participating laboratories will disseminate project outcomes through scientific articles, public and conference presentations, and other outreach tools including project websites and joint curricular activities.The cognitive ability to use information from individual events to build knowledge and make context-appropriate decisions is integral to daily life in humans but poses a significant challenge for hardware and software systems. Decades of research has indicated that a brain structure called the hippocampus plays a crucial role in enabling context-appropriate decision-making. The goal of this project is to design a new class of computer chips (Cognitive Computing Machines or C2M) inspired from the cognitive functions of the hippocampus. The project leverages three significant and timely developments: (1) three-dimensional integration of chips, enabling novel routing techniques for spatio-temporal signals, (2) processing-in-memory technology, capable of complex dynamic analog on-chip processing, and (3) advances in the understanding of hippocampal mechanisms and dynamics supporting learning, memory, and decisions. Further, the designed in silico C2M will be augmented with rapid and robust decision-making through novel hippocampus-aware, hardware-aware learning algorithm for range of cognitive applications. The transformative potential of the project emerges from research conducted at three different levels of abstractions (threads) and directed towards a common goal: (1) neuroscience abstraction, as in identifying and answering key questions about organizational and functional principles of hippocampus; (2) hardware abstraction, as in functionally mimicking hippocampal computing attributes in 3D integrated circuits in a technology-friendly manner; and (3) algorithm abstraction, as in incorporating event-based predictions from the hippocampus-inspired chip with knowledge-based predictions for rapid and robust learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代计算机已彻底改变了需要快速,大规模算术操作的广泛应用。但是,当今的计算机在“认知”任务上的表现仍然很差 - 需要知识建设,从过去的经验中学习以及预期未来的任务。该项目旨在通过在了解大脑如何代表和计算信息以及映射复杂信号路由的关键见解的情况下利用进步来设计新的计算机芯片 - “认知计算机(C2M)” - 绘制进步,并将其绘制到三维集成芯片上。该项目的灵感是海马,这是一种大脑结构,对于执行这些认知任务至关重要。该项目将建模并量化海马中的关键信息处理步骤。然后,这些关键的海马功能将通过最先进的硬件设计技术嵌入到固态计算芯片上。海马感知,硬件感知,算法框架将增加芯片设计工作,以在资源约束环境中实现在线学习和决策。该项目在跨越工业,消费者和国防领域的机器人技术和自主系统领域具有潜在的破坏应用。每个参与的调查员和机构都致力于支持广泛的培训和心理计划,重点是来自科学领域不足的团体的学生。参与该项目的学员将接受神经科学和工程学的罕见跨学科培训,为各种职业轨迹提供基础。此外,参与的实验室将通过科学文章,公共和会议演讲以及包括项目网站和联合当前活动在内的其他外展工具来传播项目成果。使用各个事件的信息来构建知识并做出上下文适当的决策是人类日常生活的重要性认知能力,但对硬件和软件系统构成了重大挑战。数十年的研究表明,一种称为海马的大脑结构在实现背景的决策方面起着至关重要的作用。该项目的目的是设计新的计算机芯片(认知计算机或C2M),灵感来自海马的认知功能。该项目利用了三个重大且及时的发展:(1)芯片的三维整合,为时空信号提供新颖的路由技术,(2)在内存技术中处理过程,能够进行复杂的动态模拟芯片处理处理,以及(3)对海马机制和动力学学习的理解的进步,并支持学习,记忆和记忆,并决定,并确定。此外,通过新颖的海马感知,硬件感知的学习算法,用于一系列认知应用程序的新型海马知识,可以通过快速,强大的决策来增强设计中的设计。该项目的变革潜力来自于三个不同级别的抽象(线程)进行的研究,并针对一个共同的目标:(1)神经科学抽象,例如确定和回答有关海马组织组织和功能原理的关键问题; (2)硬件抽象,就像在功能上以技术友好的方式模仿3D集成电路中的海马计算属性; (3)算法抽象,将基于事件的预测纳入了海马启发的芯片中的基于事件的预测以及基于知识的快速学习预测。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来通过评估来诚实地通过评估来诚实地支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maryam Parsa其他文献
Evolutionary vs imitation learning for neuromorphic control at the edge
边缘神经形态控制的进化与模仿学习
- DOI:
10.1088/2634-4386/ac45e7 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Catherine D. Schuman;R. Patton;Shruti R. Kulkarni;Maryam Parsa;Christopher G. Stahl;N. Haas;J. P. Mitchell;Shay Snyder;Amelie L. Nagle;Alexandra Shanafield;T. Potok - 通讯作者:
T. Potok
Neuromorphic Computing for Autonomous Racing
用于自动驾驶赛车的神经形态计算
- DOI:
10.1145/3477145.3477170 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
R. Patton;Catherine D. Schuman;Shruti R. Kulkarni;Maryam Parsa;J. P. Mitchell;N. Haas;Christopher G. Stahl;S. Paulissen;Prasanna Date;T. Potok;Shay Sneider - 通讯作者:
Shay Sneider
Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations
模拟更少,期待更多:通过低保真模拟将机器人群带入生活
- DOI:
10.48550/arxiv.2301.09018 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ricardo Vega;Kevin A. Zhu;S. Luke;Maryam Parsa;Cameron Nowzari - 通讯作者:
Cameron Nowzari
Watermarking Neuromorphic Brains: Intellectual Property Protection in Spiking Neural Networks
神经形态大脑水印:尖峰神经网络中的知识产权保护
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hamed Poursiami;Ihsen Alouani;Maryam Parsa - 通讯作者:
Maryam Parsa
Automated Design of Neuromorphic Networks for Scientific Applications at the Edge
用于边缘科学应用的神经形态网络的自动化设计
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Catherine D. Schuman;J. P. Mitchell;Maryam Parsa;J. Plank;Samuel D. Brown;G. Rose;R. Patton;T. Potok - 通讯作者:
T. Potok
Maryam Parsa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
多功能Bio-Ag NCs负载miR-200c靶向治疗耐药乳腺癌的研究
- 批准号:81871474
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:面上项目
养老设施无障碍环境的色彩设计理论与方法研究
- 批准号:51808382
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
具有超高分辨率的M-NCs/M-NPs A/SAM/MEA结构光寻址生化传感器及其生化量检测研究
- 批准号:61471207
- 批准年份:2014
- 资助金额:81.0 万元
- 项目类别:面上项目
大肠杆菌胞嘧碱通透酶CodB结构和功能的研究
- 批准号:31300618
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
铝通过Ca2+敏感的通路抑制Ⅰ组mGluR依赖LTD机制的研究
- 批准号:30972512
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
- 批准号:
2319406 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319450 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319451 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2319493 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant