Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems

合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计

基本信息

  • 批准号:
    2318616
  • 负责人:
  • 金额:
    $ 42.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

The affordability of transporting and storing liquid petroleum products has facilitated worldwide accessibility to transportation fuels such as gasoline and diesel. Similarly, the widespread adoption of variable renewable energy to decarbonize the energy sector relies on developing cost-effective energy transportation and storage technologies. Employing hydrogen for storing and transporting variable renewable energy is a promising solution, but technological advancements are necessary to ensure economic viability. Two-way liquid organic hydrogen carriers (LOHCs) are organic molecules whose well-known reactions can be exploited to store hydrogen. LOHC-based hydrogen storage and transportation technologies require a global network of distributed processing sites where LOHCs are produced (at the hydrogen source) or consumed (where hydrogen or energy is in demand); molecules are transported between these sites. The choice of LOHC molecule impacts the reactions that can be used, processes that can be employed at the processing sites, and the economics and sustainability of the entire supply chain. Thus, designing LOHC-based technologies must consider the interdependent aspects holistically. Accordingly, this project seeks to accelerate the discovery of alternative high hydrogen capacity LOHCs that are cost-effective, safe, and environmentally sustainable. A multidisciplinary team with scientific expertise from the atomic/molecular to the global scale will tackle this complex multiscale challenge. Complementing this research, the team will train the next generation of STEM engineers from diverse backgrounds. The team will also mentor students from underrepresented groups through on-campus programs and local organizations, such as the Louis Stokes Alliance for Minority Participation (LSAMP) program and the American Indian Science and Engineering Society (AISES) student chapter. Additionally, the team will engage with an Alaskan village, leveraging the participation of a local educator, to demonstrate the advantages of next-generation variable renewable energy storage and transportation technologies.The central hypothesis of the research is that alcohol-based LOHCs such as ethanol can overcome the challenges of traditional carriers, including poor thermochemistry and low hydrogen capacity. To evaluate this hypothesis, the investigators will (1) rigorously evaluate the discharging and charging catalytic chemistries of ethanol LOHC, both thermochemically and electrochemically, (2) develop kinetic models of these reactions, and (3) leverage the kinetic models to assess the techno-economics and sustainability of deploying this LOHC system in a regional and global supply chain. Given the vast space of organic molecules and several types of acceptor-less dehydrogenation chemistries, many carriers and mixtures of carriers potentially exist. Systematically exploring this space is essential to discovering optimal, cost-effective, and environmentally benign carriers. Building on the insights from studying ethanol, the investigators will explore novel alternative alcohol-based LOHCs using a new chemistry-cognizant molecule discovery platform, experimentally validate top candidates, and evaluate the economics and environmental impacts of the leading candidates relative to ethanol and currently known LOHCs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
运输和储存液体石油产品的负担能力促进了全球运输燃料(例如汽油和柴油)的可访问性。同样,可变可再生能源的广泛采用以脱碳化的能源部门依赖于开发具有成本效益的能源运输和存储技术。使用氢来存储和运输可变的可再生能源是一个有前途的解决方案,但是技术进步对于确保经济生存能力是必要的。双向液体有机氢载体(LOHC)是有机分子,可以利用众所周知的反应来储存氢。基于LOHC的氢存储和运输技术需要一个全球分布式加工位点网络的网络,在该网站上产生了LOHC(在氢来源)或消耗(需要氢或能源);分子在这些位点之间运输。 LOHC分子的选择会影响可以使用的反应,可以在处理地点使用的过程以及整个供应链的经济学和可持续性。因此,设计基于LOHC的技术必须整体考虑相互依存的方面。因此,该项目旨在加速发现具有成本效益,安全和环境可持续性的替代高氢容量LOHC。来自原子/分子到全球规模的具有科学专业知识的多学科团队将应对这一复杂的多尺度挑战。在这项研究中,团队将培训来自不同背景的下一代STEM工程师。该团队还将通过校园内计划和地方组织,例如路易斯·斯托克斯(Louis Stokes)少数群体参与计划(LSAMP)计划和美洲印度科学与工程协会(AISES)学生分会,从而指导来自代表性不足的团体的学生。此外,该团队将与阿拉斯加一个村庄互动,利用当地教育者的参与,以证明下一代可变可再生能源存储和运输技术的优势。该研究的中心假设是,基于酒精的LOHC(例如乙醇)可以克服传统携带者的挑战,包括较差的热化学能力和低水力化学和低水力化学和低水力学能力。为了评估这一假设,研究人员将(1)严格评估乙醇LOHC的排放和充电催化化学,无论是在热化学和电化学上,(2)开发这些反应的动力学模型,(3)利用动力学模型来评估该量的技术经济学和可持续性,并在该供应量中进行了lohc的供应群体和全球系统。鉴于有机分子的巨大空间和几种无受体脱氢化学的化学物质,许多载体和载体的混合物可能存在。系统地探索这个空间对于发现最佳,成本效益和环境良性载体至关重要。研究人员将基于研究乙醇的见解,使用新的化学认知认识的分子发现平台探索新颖的基于酒精的LOHC,实验验证了顶级候选者,并评估领先候选人的经济和环境影响,并通过乙醇和目前的infortional indurom deem deem deem deem deem dee eytie teem nistrique s。更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srinivas Rangarajan其他文献

A High-Throughput and Data-Driven Computational Framework for Novel Quantum Materials
新型量子材料的高通量和数据驱动的计算框架
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Kastuar;Christopher Rzepa;Srinivas Rangarajan;C. Ekuma
  • 通讯作者:
    C. Ekuma
Automated identification of isofragmented reactions and application in correcting molecular property models
同断裂反应的自动识别及其在分子性质模型校正中的应用
  • DOI:
    10.1016/j.ces.2023.119411
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Aidan O'Donnell;Bowen Li;Srinivas Rangarajan;Chrysanthos E. Gounaris
  • 通讯作者:
    Chrysanthos E. Gounaris

Srinivas Rangarajan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srinivas Rangarajan', 18)}}的其他基金

CAREER: Computational design of sustainable hydrogenation systems via a novel combination of data science, optimization, and ab initio methods
职业:通过数据科学、优化和从头算方法的新颖组合进行可持续加氢系统的计算设计
  • 批准号:
    2045550
  • 财政年份:
    2021
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
CDS&E: Collaborative Research: Towards computational discovery of synthetically feasible porous organic frameworks
CDS
  • 批准号:
    1953245
  • 财政年份:
    2020
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant

相似国自然基金

多功能菌群协作及对浮萍塘生态功能的长期调控效应与机制研究
  • 批准号:
    32360314
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
面向信息生态复杂性的群体博弈与协作动力学研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
乡村旅游社区恢复力的形成机制研究:行动者网络理论视角
  • 批准号:
    41701144
  • 批准年份:
    2017
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
横断山区高山垫状植物与其它植物双向协作共存机制及其对高山生态系统功能及意义研究
  • 批准号:
    31500185
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
横断山区高山流石滩垫状植物适应策略及协作共存机制的研究
  • 批准号:
    31270005
  • 批准年份:
    2012
  • 资助金额:
    69.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems
合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计
  • 批准号:
    2318618
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems
合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计
  • 批准号:
    2318619
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems
合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计
  • 批准号:
    2318617
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了