Conference: Nebraska Conference for Undergraduate Women in Mathematics

会议:内布拉斯加州数学本科女性会议

基本信息

  • 批准号:
    2318072
  • 负责人:
  • 金额:
    $ 19.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The 26th Nebraska Conference for Undergraduate Women in Mathematics (NCUWM) will be hosted by the University of Nebraska-Lincoln from Jan. 26-28, 2024. The 27th and 28th iterations of the conference will take place in late January or early February in 2025 and 2026, respectively. The mission of this conference is to support undergraduate women mathematics majors who wish to attend graduate school and to help and encourage them to identify possible careers using mathematics. All undergraduates are welcome to apply, regardless of gender identity or expression, race, color, ethnicity, or national origin. NCUWM plays an important role in inspiring undergraduate participants to pursue mathematics and has a positive impact on their professional growth. The conference program includes plenary talks by prominent women mathematicians, three panel discussions, small group conversations focused on a range of topics, and undergraduate research presentations in talk and poster sessions. Various networking opportunities throughout the program connect participants with peers and role models. Held annually since 1999, the conference has grown from 53 undergraduate participants to over 250 each year. In total, more than 5,000 undergraduates have attended NCUWM in its 25-year history. In addition to professional development opportunities, participants learn cutting-edge mathematics from plenary speakers and from one another. Many attendees have conducted independent, original research projects, and the conference program includes a poster session and more than five hours of talks by undergraduate participants scheduled in parallel sessions. The three panel discussions focus on careers in mathematics, choosing a graduate program, and random bits of advice. The design of the conference centers on the research-supported assertion that developing a broad mentoring network can be incredibly important for the recruitment and retention of women in STEM fields, and results of formal evaluations have corroborated the broad impact the conference has had on its participants. The conference webpage is available at https://math.unl.edu/ncuwm/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第 26 届内布拉斯加州本科女性数学会议 (NCUWM) 将于 2024 年 1 月 26 日至 28 日由内布拉斯加大学林肯分校主办。第 27 届和第 28 届会议将于 2025 年 1 月下旬或 2 月初举行分别是2026年和2026年。这次会议的使命是支持希望进入研究生院的数学专业本科女性,并帮助和鼓励她们确定使用数学的可能职业。欢迎所有本科生申请,无论性别认同或表达、种族、肤色、民族或国籍。 NCUWM 在激励本科生学习数学方面发挥着重要作用,并对他们的职业成长产生积极影响。会议议程包括著名女数学家的全体演讲、三场小组讨论、专注于一系列主题的小组对话,以及演讲和海报会议中的本科生研究报告。整个计划中的各种交流机会将参与者与同行和榜样联系起来。该会议自 1999 年起每年举办一次,参会本科生人数已从 53 人增加到每年 250 多人。在 25 年的历史中,共有超过 5,000 名本科生就读于 NCUWM。除了专业发展机会外,参与者还可以向全体演讲者和彼此学习尖端数学。许多与会者进行了独立的原创研究项目,会议议程包括海报会议和本科生与会者在并行会议中安排的五个多小时的演讲。三个小组讨论的重点是数学职业、选择研究生课程以及一些随机的建议。会议的设计以研究支持的主张为中心,即建立广泛的指导网络对于 STEM 领域女性的招聘和留用非常重要,正式评估的结果证实了会议对其参与者产生的广泛影响。会议网页可访问 https://math.unl.edu/ncuwm/。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Zupan其他文献

Bridge trisections of knotted surfaces in $S^4$
$S^4$ 中结曲面的桥三等分
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Meier;Alexander Zupan
  • 通讯作者:
    Alexander Zupan
Bridge and pants complexities of knots
桥结和裤子结的复杂性
Genus two trisections are standard
属二三等分是标准的
  • DOI:
    10.2140/gt.2017.21.1583
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Meier;Alexander Zupan
  • 通讯作者:
    Alexander Zupan
Unexpected local minima in the width complexes for knots
结宽度复合体中出现意外的局部最小值
  • DOI:
    10.2140/agt.2011.11.1097
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Zupan
  • 通讯作者:
    Alexander Zupan
Products of Farey graphs are totally geodesic in the pants graph
Farey 图的乘积在裤子图中完全是测地线
  • DOI:
    10.1142/s1793525316500096
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Samuel J. Taylor;Alexander Zupan
  • 通讯作者:
    Alexander Zupan

Alexander Zupan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Zupan', 18)}}的其他基金

Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms
协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系
  • 批准号:
    2350343
  • 财政年份:
    2024
  • 资助金额:
    $ 19.42万
  • 项目类别:
    Standard Grant
Interactions of 3- and 4-Dimensional Topology
3 维和 4 维拓扑的相互作用
  • 批准号:
    2005518
  • 财政年份:
    2020
  • 资助金额:
    $ 19.42万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Trisections -- New Directions in Low-Dimensional Topology
FRG:协作研究:三等分——低维拓扑的新方向
  • 批准号:
    1664578
  • 财政年份:
    2017
  • 资助金额:
    $ 19.42万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1203988
  • 财政年份:
    2012
  • 资助金额:
    $ 19.42万
  • 项目类别:
    Fellowship Award

相似海外基金

2022 International Conference on Gram Positive Pathogens
2022年革兰氏阳性病原体国际会议
  • 批准号:
    10539629
  • 财政年份:
    2022
  • 资助金额:
    $ 19.42万
  • 项目类别:
Nebraska Conference for Undergraduate Women in Mathematics
内布拉斯加州数学本科女性会议
  • 批准号:
    1912868
  • 财政年份:
    2020
  • 资助金额:
    $ 19.42万
  • 项目类别:
    Standard Grant
Nebraska Conference for Undergraduate Women in Mathematics
内布拉斯加州数学本科女性会议
  • 批准号:
    1855160
  • 财政年份:
    2019
  • 资助金额:
    $ 19.42万
  • 项目类别:
    Standard Grant
Nebraska Conference for Undergraduate Women in Mathematics
内布拉斯加州数学本科女性会议
  • 批准号:
    1551087
  • 财政年份:
    2016
  • 资助金额:
    $ 19.42万
  • 项目类别:
    Standard Grant
International Conference on Grampositive Pathogens
国际革兰氏阳性病原体会议
  • 批准号:
    8785549
  • 财政年份:
    2014
  • 资助金额:
    $ 19.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了