Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems

合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络

基本信息

  • 批准号:
    2316305
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Fresh water plays an important role for the global economic, food, water, and energy networks, but freshwater ecosystems continue to degrade due to pressures from increasing demands for freshwater ecosystem services and a shifting climate. Timely monitoring of water properties can provide useful information for sound policy and management decisions to address important water-related challenges such as droughts, floods, and water security. Moreover, the information of water properties such as water temperature and streamflow can help better understand relevant biogeochemical and ecological processes in the water cycle. The recent investment on large-scale water data repositories provides a tremendous opportunity for using machine learning to capture complex water dynamics over space and time. In particular, graph neural networks have shown great promise for modeling interactions amongst streams in large river basins. However, in the absence of underlying physical knowledge, direct applications of existing graph-based models remain limited in capturing complex water-related processes, modeling the shift of data distribution caused by human infrastructure or changing climate, and learning from a paucity of data samples. To overcome these limitations, this project will explore a deep coupling of graph network models with physical knowledge to model complex, non-stationary, poorly observed water dynamics in freshwater ecosystems. This project will provide research opportunities to graduate and undergraduate students from diverse backgrounds, and the results of this project will be incorporated into curriculum development. This project aims to develop new physics-guided graph network models by designing new model architectures, learning strategies, and initialization methods. This project will also explore different ways to leverage physical knowledge, both directly by integrating physics from known mathematical equations, and indirectly by making use of the knowledge embodied in existing physics-based models. In particular, there are three innovations that are pursued in this project. First, new graph-based architectures will be developed to model the complex nature of physical objects and the dynamic interactions between physical processes. Second, new graph-based continual learning strategies will be investigated to model long term system evolution caused by newly added infrastructure and changing climate. Third, new model initialization methods will be developed by transferring knowledge from existing physics-based models to the proposed graph network models to facilitate learning physically consistent patterns in data-scarce scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
淡水对于全球经济,食品,水和能源网络起着重要作用,但是由于对淡水生态系统服务的需求不断增长和气候变化,淡水生态系统继续降低。及时监控水性能可以为合理的政策和管理决策提供有用的信息,以应对与水有关的重要挑战,例如干旱,洪水和水安全。此外,水温和水流等水性能的信息可以帮助更好地理解水周期中相关的生物地球化学和生态过程。 最近对大规模水数据存储库的投资为使用机器学习在时空上捕获复杂的水动力学提供了巨大的机会。尤其是,图神经网络在大型河流盆地中的流相互作用上表现出了巨大的希望。但是,在没有潜在的物理知识的情况下,现有基于图的模型的直接应用在捕获复杂的水相关过程时仍然有限,建模由人类基础设施或气候变化引起的数据分布的转移以及从数据样本的稀少度中学习。为了克服这些局限性,该项目将探索具有物理知识的图形网络模型的深入耦合,以建模淡水生态系统中的复杂,非平稳,观察到的水动力学。该项目将为来自不同背景的研究生和本科生提供研究机会,该项目的结果将纳入课程开发中。该项目旨在通过设计新的模型体系结构,学习策略和初始化方法来开发新的物理学指导网络模型。该项目还将通过直接通过从已知的数学方程式整合物理学,并通过利用现有基于物理学的模型中体现的知识来探索不同的方法来利用物理知识。特别是,该项目有三项创新。首先,将开发新的基于图的架构,以建模物理对象的复杂性质和物理过程之间的动态交互。其次,将研究新的基于图的持续学习策略,以模拟由新添加的基础架构和气候变化引起的长期系统演变。第三,将通过将知识从现有的基于物理的模型转移到拟议的图形网络模型来开发新的模型初始化方法,以促进在数据筛选方案中学习在物理一致的模式。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识绩效和更广泛影响的评估来通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaowei Jia其他文献

Referee-Meta-Learning for Fast Adaptation of Locational Fairness
用于快速适应位置公平性的裁判元学习
Ordered micro-mesoporous carbon nanopheres embedded with Ni/Ni<sub>3</sub>ZnC<sub>0.7</sub> heterostructure as an efficient cathode host for high-performance lithium-sulfur batteries
  • DOI:
    10.1016/j.apsusc.2024.161401
  • 发表时间:
    2025-01-30
  • 期刊:
  • 影响因子:
  • 作者:
    Shibo Feng;Shaobo Wang;Xiaowei Jia;Jiudi Zhang;Yisen Lv;Yajuan Guo;Jinzheng Yang;Yali Wang;Junjie Li;Zhanshuang Jin
  • 通讯作者:
    Zhanshuang Jin
Analysis of Energy Consumption Structure on CO2 Emission and Economic Sustainable Growth
能源消费结构对CO2排放与经济可持续增长的影响分析
  • DOI:
    10.1016/j.egyr.2022.02.296
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Zhiqiang Wang;Xiaowei Jia
  • 通讯作者:
    Xiaowei Jia
Improving Explainable Object-induced Model through Uncertainty for Automated Vehicles
通过自动驾驶车辆的不确定性改进可解释的对象诱发模型
Comparative study on stained InGaAs quantum wells for high-speed optical-interconnect VCSELs
  • DOI:
    10.1016/j.optcom.2018.01.032
  • 发表时间:
    2018-05-15
  • 期刊:
  • 影响因子:
  • 作者:
    Hui Li;Xiaowei Jia
  • 通讯作者:
    Xiaowei Jia

Xiaowei Jia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaowei Jia', 18)}}的其他基金

CAREER: Combining Machine Learning and Physics-based Modeling Approaches for Accelerating Scientific Discovery
职业:结合机器学习和基于物理的建模方法来加速科学发现
  • 批准号:
    2239175
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
FAI: Advancing Deep Learning Towards Spatial Fairness
FAI:推进深度学习迈向空间公平
  • 批准号:
    2147195
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CDS&E: Physics Guided Super-Resolution for Turbulent Transport
CDS
  • 批准号:
    2203581
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

III-E型CRISPR-Cas系统的结构生物学及其应用研究
  • 批准号:
    32371276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
乙肝肝纤维化进程咪唑丙酸通过mTORC1通路调控III型固有淋巴细胞糖脂代谢重编程及机制研究
  • 批准号:
    82370622
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
铁载体与Fe(III)相互作用过程的铁同位素分馏及机理的模拟实验研究
  • 批准号:
    42377264
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于III-V族半导体纳米结构阵列的短波红外偏振探测理论与方法研究
  • 批准号:
    62305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高性能TM(I)-Ln(III)单分子磁体的可控合成与构效关系研究
  • 批准号:
    22371031
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了