FAI: Advancing Deep Learning Towards Spatial Fairness

FAI:推进深度学习迈向空间公平

基本信息

  • 批准号:
    2147195
  • 负责人:
  • 金额:
    $ 75.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The goal of spatial fairness is to reduce biases that have significant linkage to the locations or geographical areas of data samples. Such biases, if left unattended, can cause or exacerbate unfair distribution of resources, social division, spatial disparity, and weaknesses in resilience or sustainability. Spatial fairness is urgently needed for the use of artificial intelligence in a large variety of real-world problems such as agricultural monitoring and disaster management. Agricultural products, including crop maps and acreage estimates, are used to inform important decisions such as the distribution of subsidies and providing farm insurance. Inaccuracies and inequities produced by spatial biases adversely affect these decisions. Similarly, effective and fair mapping of natural disasters such as floods or fires is critical to inform live-saving actions and quantify damages and risks to public infrastructures, which is related to insurance estimation. Machine learning, in particular deep learning, has been widely adopted for spatial datasets with promising results. However, straightforward applications of machine learning have found limited success in preserving spatial fairness due to the variation of data distribution, data quantity, and data quality. The goal of this project is to develop a new generation of learning frameworks to explicitly preserve spatial fairness. The results and code will be made freely available and integrated into existing geospatial software. The methods will also be tested for incorporation in existing real systems (crop and water monitoring). This project aims to advance deep learning methods toward spatial fairness via four innovations. First, new statistical formulations of spatial fairness will be investigated to address unique challenges brought by the continuous spatial domain, particularly due to a variety of ways to partition the space and create location-groups for fairness evaluation, and the fact that statistical conclusions are sensitive to changes in space-partitionings. Second, new network architectures will be developed to improve the spatial fairness by mitigating the conflicts amongst different locations due to the shift of data distribution over space. Third, new fairness-driven adversarial learning strategies will be used to guide the training to converge to parameters that can maintain a high overall solution quality while maximizing spatial fairness across locations. Finally, a knowledge-enhanced approach will be proposed, which integrates general physical relationships to mitigate data-inequality incurred spatial biases, and simulates relevant variables and parameters in underlying physical processes to enhance knowledge-based interpretability of spatial fairness.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
空间公平的目标是减少与数据样本的位置或地理区域有显着联系的偏差。如果不加注意,这种偏见可能会导致或加剧资源分配不公平、社会分化、空间差异以及复原力或可持续性方面的弱点。人工智能在农业监测和灾害管理等各种现实问题中的应用迫切需要空间公平。农产品,包括农作物地图和面积估算,用于为重要决策提供信息,例如补贴分配和提供农业保险。空间偏差造成的不准确和不公平会对这些决策产生不利影响。同样,有效和公平地绘制洪水或火灾等自然灾害地图对于为救生行动提供信息并量化公共基础设施的损害和风险至关重要,这与保险估算有关。机器学习,特别是深度学习,已广泛应用于空间数据集,并取得了可喜的结果。 然而,由于数据分布、数据数量和数据质量的变化,机器学习的直接应用在保持空间公平性方面取得的成功有限。该项目的目标是开发新一代学习框架,以明确维护空间公平性。结果和代码将免费提供并集成到现有的地理空间软件中。这些方法还将进行测试,以便将其纳入现有的实际系统(作物和水监测)。该项目旨在通过四项创新推动深度学习方法实现空间公平。首先,将研究空间公平性的新统计公式,以解决连续空间域带来的独特挑战,特别是由于划分空间和创建用于公平性评估的位置组的多种方式,以及统计结论敏感的事实空间分区的变化。其次,将开发新的网络架构,通过减轻由于数据分布在空间上的转移而导致的不同位置之间的冲突来提高空间公平性。第三,新的公平驱动的对抗性学习策略将用于指导训练收敛到可以保持较高整体解决方案质量的参数,同时最大化跨位置的空间公平性。最后,将提出一种知识增强方法,该方法集成一般物理关系,以减轻数据不平等引起的空间偏差,并模拟底层物理过程中的相关变量和参数,以增强基于知识的空间公平性的可解释性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sailing in the location-based fairness-bias sphere
在基于位置的公平偏见领域航行
Meta-Transfer Learning: An application to Streamflow modeling in River-streams
Physics-guided machine learning from simulated data with different physical parameters
  • DOI:
    10.1007/s10115-023-01864-z
  • 发表时间:
    2023-03-31
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Chen, Shengyu;Kalanat, Nasrin;Jia, Xiaowei
  • 通讯作者:
    Jia, Xiaowei
Deep semantic segmentation for building detection using knowledge-informed features from LiDAR point clouds
使用 LiDAR 点云的知识信息特征进行建筑物检测的深度语义分割
Physics-Guided Graph Meta Learning for Predicting Water Temperature and Streamflow in Stream Networks
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaowei Jia其他文献

Referee-Meta-Learning for Fast Adaptation of Locational Fairness
用于快速适应位置公平性的裁判元学习
Analysis of Energy Consumption Structure on CO2 Emission and Economic Sustainable Growth
能源消费结构对CO2排放与经济可持续增长的影响分析
  • DOI:
    10.1016/j.egyr.2022.02.296
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Zhiqiang Wang;Xiaowei Jia
  • 通讯作者:
    Xiaowei Jia
Improving Explainable Object-induced Model through Uncertainty for Automated Vehicles
通过自动驾驶车辆的不确定性改进可解释的对象诱发模型
Oxidation co-catalyst modified In2S3 with efficient interfacial charge transfer for boosting photocatalytic H2 evolution
氧化助催化剂改性 In2S3 具有高效的界面电荷转移,可促进光催化析氢
  • DOI:
    10.1016/j.ijhydene.2022.05.267
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Ruyu Zhang;Xiaowei Jia;Yueran Li;Xiaodan Yu;Yan Xing
  • 通讯作者:
    Yan Xing
Phenotyping calcification in vascular tissues using artificial intelligence
使用人工智能对血管组织中的钙化进行表型分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mehdi Ramezanpour;Anne M. Robertson;Yasutaka Tobe;Xiaowei Jia;J. Cebral
  • 通讯作者:
    J. Cebral

Xiaowei Jia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaowei Jia', 18)}}的其他基金

CAREER: Combining Machine Learning and Physics-based Modeling Approaches for Accelerating Scientific Discovery
职业:结合机器学习和基于物理的建模方法来加速科学发现
  • 批准号:
    2239175
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
  • 批准号:
    2316305
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Standard Grant
CDS&E: Physics Guided Super-Resolution for Turbulent Transport
CDS
  • 批准号:
    2203581
  • 财政年份:
    2022
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Standard Grant

相似国自然基金

果蝇幼虫前进运动发起的神经机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
机器人鸟“前进”运动控制神经信息传导通路及反馈研究
  • 批准号:
    61903230
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
内蒙古中东部毛登-前进场早石炭世强过铝花岗岩带地球化学成因及其构造意义
  • 批准号:
    41702054
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
搅拌摩擦焊接过程前进阻力周期脉动振荡行为及调控研究
  • 批准号:
    51675248
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
高前进比大反流区对旋翼操纵响应的作用机理及影响规律研究
  • 批准号:
    51505216
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: CET: Advancing Sustainable Cathode Recycling of Spent Lithium-Ion Batteries using Deep Eutectic Solvents
EAGER:CET:使用低共熔溶剂推进废旧锂离子电池的可持续阴极回收
  • 批准号:
    2343621
  • 财政年份:
    2024
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Standard Grant
III: Medium: Advancing Deep Learning for Inverse Modeling
III:媒介:推进逆向建模的深度学习
  • 批准号:
    2313174
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Standard Grant
Constructing a large-scale biomedical knowledge graph using all PubMed abstracts and PMC full-text articles and its applications
利用所有PubMed摘要和PMC全文文章构建大规模生物医学知识图谱及其应用
  • 批准号:
    10648553
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
Advancing One Health Data Capture at the Point of Zoonotic Spillover in the Congo Basin Forest Perimeter
在刚果盆地森林周边人畜共患病蔓延时推进单一健康数据采集
  • 批准号:
    10741526
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
Collaborative Research: REU Site: Advancing Data-Driven Deep Coupling of Computational Simulations and Experiments
合作研究:REU 站点:推进数据驱动的计算模拟和实验的深度耦合
  • 批准号:
    2243981
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了