Collaborative Research: SHF: Medium: Learning Semantics of Code To Automate Software Assurance Tasks
协作研究:SHF:媒介:学习代码语义以自动化软件保障任务
基本信息
- 批准号:2313055
- 负责人:
- 金额:$ 66.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep learning has demonstrated great potential for accomplishing software engineering tasks. However, its capabilities are limited for challenging yet very important software assurance tasks such as bug detection, debugging, test input generation, and test suite prioritization. These tasks are hard to formulate into a learning problem. A major part of the difficulty is that these complex tasks require modeling of program semantics. To the best of our knowledge, even state-of-the-art deep learning models have an insufficient understanding of program semantics. As a result, the models fail to achieve sufficient precision and recall to be more widely deployed. The tools do not generalize well to unseen projects and are not robust to small perturbations in source code. It also takes large amounts of computational resources and data to train the models. In this project, the team of researchers aims to improve the performance, robustness, generalizability and efficiency of deep learning models for software assurance and to enable deep learning for complex tasks that have not yet successfully used deep learning. Solutions will target encoding program semantics into the program representation by combining program analysis, software engineering, and deep learning expertise to develop novel formulations to effectively reduce software assurance problems via deep learning. The project has three research thrusts: To learn with abstract semantics, the project will study how to combine static analysis algorithms and the results from static analysis with deep learning models. To learn with concrete semantics, the project will study how to use program execution traces to guide deep learning. Finally, the project will investigate how to identify spurious features used by the current models and then apply causal learning to discourage models that have spurious features. Research results, datasets, and tools will be disseminated to the research community, and workshops will be organized to strengthen the research community of deep learning for code.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习在完成软件工程任务方面表现出了巨大的潜力,但对于具有挑战性但非常重要的软件保证任务(例如错误检测、调试、测试输入生成和测试套件优先级划分)而言,其能力有限。据我们所知,困难的一个主要部分是这些复杂的任务需要对程序语义进行建模,即使是最先进的深度学习模型对程序语义的理解也不够。模型未能达到足够的精度并且这些工具不能很好地推广到未见过的项目,并且对源代码中的小扰动不具有鲁棒性。它还需要大量的计算资源和数据来训练模型。在这个项目中,团队研究人员的目标是提高软件保障深度学习模型的性能、鲁棒性、通用性和效率,并为尚未成功使用深度学习的复杂任务提供深度学习,解决方案将通过结合程序分析将程序语义编码到程序表示中。 、软件工程和深度学习专业知识开发新颖的公式,通过深度学习有效减少软件保障问题 该项目有三个研究重点: 通过抽象语义进行学习,该项目将研究如何将静态分析算法和静态分析的结果与深度学习模型相结合进行学习。最后,该项目将研究如何识别当前模型使用的虚假特征,然后应用因果学习来阻止具有虚假特征的模型。数据集和工具将该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baishakhi Ray其他文献
Variation of Gender Biases in Visual Recognition Models Before and After Finetuning
视觉识别模型微调前后性别偏差的变化
- DOI:
10.48550/arxiv.2303.07615 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jaspreet Ranjit;Tianlu Wang;Baishakhi Ray;Vicente Ordonez - 通讯作者:
Vicente Ordonez
A Case Study on the Impact of Similarity Measure on Information Retrieval based Software Engineering Tasks
相似性度量对基于信息检索的软件工程任务影响的案例研究
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Md Masudur Rahman;Saikat Chakraborty;G. Kaiser;Baishakhi Ray - 通讯作者:
Baishakhi Ray
KGym: A Platform and Dataset to Benchmark Large Language Models on Linux Kernel Crash Resolution
KGym:在 Linux 内核崩溃解决方案上对大型语言模型进行基准测试的平台和数据集
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Alex Mathai;Chenxi Huang;Petros Maniatis;A. Nogikh;Franjo Ivancic;Junfeng Yang;Baishakhi Ray - 通讯作者:
Baishakhi Ray
Poster: Searching for High-Performing Software Configurations with Metaheuristic Algorithms
海报:使用元启发式算法搜索高性能软件配置
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Chong Tang;K. Sullivan;Baishakhi Ray - 通讯作者:
Baishakhi Ray
Recommending GitHub Projects for Developer Onboarding
推荐用于开发人员入门的 GitHub 项目
- DOI:
10.1109/access.2018.2869207 - 发表时间:
2018-09 - 期刊:
- 影响因子:3.9
- 作者:
Chao Liu;Dan Yang;Xiaohong Zhang;Baishakhi Ray;Md. Masudur Rahman - 通讯作者:
Md. Masudur Rahman
Baishakhi Ray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baishakhi Ray', 18)}}的其他基金
Collaborative Research: SHF: Medium: Causal Performance Debugging for Highly-Configurable Systems
合作研究:SHF:中:高度可配置系统的因果性能调试
- 批准号:
2107405 - 财政年份:2021
- 资助金额:
$ 66.6万 - 项目类别:
Standard Grant
Workshop on Deep Learning and Software Engineering
深度学习与软件工程研讨会
- 批准号:
1945999 - 财政年份:2019
- 资助金额:
$ 66.6万 - 项目类别:
Standard Grant
TWC: Small: Collaborative: Automated Detection and Repair of Error Handling Bugs in SSL/TLS Implementations
TWC:小:协作:自动检测和修复 SSL/TLS 实现中的错误处理错误
- 批准号:
1946068 - 财政年份:2019
- 资助金额:
$ 66.6万 - 项目类别:
Standard Grant
CAREER: Systematic Software Testing for Deep Learning Applications
职业:深度学习应用程序的系统软件测试
- 批准号:
1845893 - 财政年份:2019
- 资助金额:
$ 66.6万 - 项目类别:
Continuing Grant
EAGER: Finding Semantic Security Bugs with Pseudo-Oracle Testing
EAGER:通过伪 Oracle 测试查找语义安全漏洞
- 批准号:
1842456 - 财政年份:2018
- 资助金额:
$ 66.6万 - 项目类别:
Standard Grant
CHS: Small: Translating Compilers for Visual Computing in Dynamic Languages
CHS:小型:用动态语言翻译用于视觉计算的编译器
- 批准号:
1936523 - 财政年份:2018
- 资助金额:
$ 66.6万 - 项目类别:
Standard Grant
CHS: Small: Translating Compilers for Visual Computing in Dynamic Languages
CHS:小型:用动态语言翻译用于视觉计算的编译器
- 批准号:
1619123 - 财政年份:2016
- 资助金额:
$ 66.6万 - 项目类别:
Standard Grant
TWC: Small: Collaborative: Automated Detection and Repair of Error Handling Bugs in SSL/TLS Implementations
TWC:小:协作:自动检测和修复 SSL/TLS 实现中的错误处理错误
- 批准号:
1618771 - 财政年份:2016
- 资助金额:
$ 66.6万 - 项目类别:
Standard Grant
相似国自然基金
离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
- 批准号:52364012
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
- 批准号:32301770
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
- 批准号:52302362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
- 批准号:72302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
- 批准号:32300133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 66.6万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 66.6万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 66.6万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 66.6万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 66.6万 - 项目类别:
Standard Grant