Collaborative Research: SHF: Medium: Causal Performance Debugging for Highly-Configurable Systems

合作研究:SHF:中:高度可配置系统的因果性能调试

基本信息

  • 批准号:
    2107405
  • 负责人:
  • 金额:
    $ 37.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Software performance is critical for most software systems to achieve scale and limit operating costs and energy consumption. As modern software systems, such as big data and machine-learning systems, are increasingly built by composing many reusable infrastructure components and deployed on distributed and heterogeneous hardware, developers have powerful tools and abstractions at their fingertips, and as a result face immense configuration complexity. Software and hardware need to be selected and configured carefully to achieve high performance for a given system and task. Unfortunately, in practice, performance faults and misconfigurations are common, where a system performs much worse than expected, not achieving its mission or simply wasting cost and energy. In large configuration spaces, end-users and developers face severe challenges in understanding and fixing performance faults by changing software configuration, changing hardware deployment, or modifying the software's code itself. Current approaches that model system performance by analyzing correlations among performance measurements and options are slow and may produce misleading results, obfuscating the actual causes of performance faults. Even if they can fix the problem, most of them cannot explain why (1) the obtained configurations are the real cause of the problem, and (2) a user/developer should consider the proposed recommendations. In both cases, the lack of explainability is a big issue. The project is intended to initiate a paradigm shift in today's testing and debugging methodology for complex, highly configurable systems, thereby positively impacting a broad range of industrial sectors relying on complex, highly configurable systems. Specifically, the project contributes to substantial energy savings and reduced carbon emissions, especially for the many big-data and machine-learning systems that operate at a massive scale. Finally, the research is providing valuable training for involved students from diverse backgrounds in research and generating high-quality researchers and practitioners for society. This project develops and evaluates foundations and tools for a causal approach to performance modeling and performance debugging. This project introduces the new concept of causal performance models that are learned using causal structure learning by intervening over configuration options and observing system performance regarding (multiple) performance objectives, rather than just analyzing correlations. Causal models enable causal inference and counterfactual reasoning for numerous tasks, including debugging performance faults and misconfigurations. Based on a solid technical foundation of causal modeling and extensive experience with performance modeling for configurable systems, this project develops innovations in three thrusts: (1) It designs and refines a causal modeling approach for software performance of systems composed of multiple configurable components, using innovations in sampling strategies, code analysis, compositional reasoning, and transfer learning to build accurate causal models efficiently. (2) It develops and evaluates user-facing tool support, based on causal models, to help users select well-performing configurations for their specific tasks and hardware and resolve misconfiguration faults with configuration changes, highlighting the (causal) performance impact of configuration decisions and providing a Pareto analysis of involved tradeoffs. (3) It develops and evaluates developer-facing tool support to foster code-level debugging and documentation. Finally, all contributions are being evaluated end-to-end with developers on real performance faults, showing how both users and developers benefit from causal models and related tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
软件性能对于大多数软件系统至关重要,以实现规模并限制运营成本和能源消耗。由于现代软件系统(例如大数据和机器学习系统)越来越多地通过组成许多可重复使用的基础架构组件并部署在分布式和异质性硬件上,因此开发人员的触手可及的工具和抽象功能强大,因此面对巨大的配置复杂性的复杂性。需要仔细选择和配置软件和硬件,以实现给定系统和任务的高性能。不幸的是,在实践中,性能错误和配置错误很常见,因为系统的性能比预期的要差得多,而不是实现其任务或仅仅浪费成本和精力。在大型配置空间中,最终用户和开发人员通过更改软件配置,更改硬件部署或修改软件的代码本身来理解和修复性能错误时面临严重的挑战。当前的方法通过分析性能测量和选项之间的相关性来对系统性能进行建模,这可能会产生误导性结果,从而掩盖了性能故障的实际原因。即使他们可以解决问题,大多数人也无法解释为什么(1)获得的配置是问题的真正原因,并且(2)用户/开发人员应考虑提出的建议。在这两种情况下,缺乏解释性都是一个大问题。该项目旨在为复杂的,高度可配置的系统的当今测试和调试方法启动范式转移,从而积极影响依靠复杂,高度可配置的系统的广泛工业领域。具体而言,该项目有助于节省大量能源并减少碳排放,尤其是对于许多大规模运行的大数据和机器学习系统。最后,这项研究为来自研究的不同背景的学生提供了宝贵的培训,并为社会创造了高质量的研究人员和从业人员。该项目开发并评估了基础和工具,以实现因果方法进行绩效建模和绩效调试的方法。该项目介绍了因果绩效模型的新概念,这些概念是通过介入配置选项并观察有关(多个)性能目标的系统性能,而不仅仅是分析相关性来学习的。因果模型为许多任务提供了因果推理和反事实推理,包括调试绩效错误和配置错误。基于因果建模的扎实技术基础和可配置系统的性能建模的丰富经验,该项目以三个推力开发创新:(1)它设计和完善了一种由多个可配置组件组成的系统的软件性能的因果建模方法采样策略,代码分析,组成推理和转移学习中的创新,以有效地建立准确的因果模型。 (2)它基于因果模型来开发和评估面向用户的工具支持,以帮助用户为其特定任务和硬件选择良好的表现配置,并通过配置更改解决错误配置的故障,突出显示(因果关系)配置决策的(因果)性能影响并提供有关涉及权衡的帕累托分析。 (3)它开发和评估面向开发人员的工具支持,以促进代码级调试和文档。最后,所有贡献都在端到端评估开发人员对实际绩效错误的影响,展示了用户和开发人员如何从因果模型和相关工具中受益。该奖项反映了NSF的法定任务,并被认为值得通过使用该评估的支持。基金会的智力优点和更广泛的影响评论标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Baishakhi Ray其他文献

Variation of Gender Biases in Visual Recognition Models Before and After Finetuning
视觉识别模型微调前后性别偏差的变化
  • DOI:
    10.48550/arxiv.2303.07615
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaspreet Ranjit;Tianlu Wang;Baishakhi Ray;Vicente Ordonez
  • 通讯作者:
    Vicente Ordonez
A Case Study on the Impact of Similarity Measure on Information Retrieval based Software Engineering Tasks
相似性度量对基于信息检索的软件工程任务影响的案例研究
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Md Masudur Rahman;Saikat Chakraborty;G. Kaiser;Baishakhi Ray
  • 通讯作者:
    Baishakhi Ray
KGym: A Platform and Dataset to Benchmark Large Language Models on Linux Kernel Crash Resolution
KGym:在 Linux 内核崩溃解决方案上对大型语言模型进行基准测试的平台和数据集
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alex Mathai;Chenxi Huang;Petros Maniatis;A. Nogikh;Franjo Ivancic;Junfeng Yang;Baishakhi Ray
  • 通讯作者:
    Baishakhi Ray
Poster: Searching for High-Performing Software Configurations with Metaheuristic Algorithms
海报:使用元启发式算法搜索高性能软件配置
Recommending GitHub Projects for Developer Onboarding
推荐用于开发人员入门的 GitHub 项目
  • DOI:
    10.1109/access.2018.2869207
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Chao Liu;Dan Yang;Xiaohong Zhang;Baishakhi Ray;Md. Masudur Rahman
  • 通讯作者:
    Md. Masudur Rahman

Baishakhi Ray的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Baishakhi Ray', 18)}}的其他基金

Collaborative Research: SHF: Medium: Learning Semantics of Code To Automate Software Assurance Tasks
协作研究:SHF:媒介:学习代码语义以自动化软件保障任务
  • 批准号:
    2313055
  • 财政年份:
    2023
  • 资助金额:
    $ 37.3万
  • 项目类别:
    Standard Grant
Workshop on Deep Learning and Software Engineering
深度学习与软件工程研讨会
  • 批准号:
    1945999
  • 财政年份:
    2019
  • 资助金额:
    $ 37.3万
  • 项目类别:
    Standard Grant
TWC: Small: Collaborative: Automated Detection and Repair of Error Handling Bugs in SSL/TLS Implementations
TWC:小:协作:自动检测和修复 SSL/TLS 实现中的错误处理错误
  • 批准号:
    1946068
  • 财政年份:
    2019
  • 资助金额:
    $ 37.3万
  • 项目类别:
    Standard Grant
CAREER: Systematic Software Testing for Deep Learning Applications
职业:深度学习应用程序的系统软件测试
  • 批准号:
    1845893
  • 财政年份:
    2019
  • 资助金额:
    $ 37.3万
  • 项目类别:
    Continuing Grant
EAGER: Finding Semantic Security Bugs with Pseudo-Oracle Testing
EAGER:通过伪 Oracle 测试查找语义安全漏洞
  • 批准号:
    1842456
  • 财政年份:
    2018
  • 资助金额:
    $ 37.3万
  • 项目类别:
    Standard Grant
CHS: Small: Translating Compilers for Visual Computing in Dynamic Languages
CHS:小型:用动态语言翻译用于视觉计算的编译器
  • 批准号:
    1936523
  • 财政年份:
    2018
  • 资助金额:
    $ 37.3万
  • 项目类别:
    Standard Grant
CHS: Small: Translating Compilers for Visual Computing in Dynamic Languages
CHS:小型:用动态语言翻译用于视觉计算的编译器
  • 批准号:
    1619123
  • 财政年份:
    2016
  • 资助金额:
    $ 37.3万
  • 项目类别:
    Standard Grant
TWC: Small: Collaborative: Automated Detection and Repair of Error Handling Bugs in SSL/TLS Implementations
TWC:小:协作:自动检测和修复 SSL/TLS 实现中的错误处理错误
  • 批准号:
    1618771
  • 财政年份:
    2016
  • 资助金额:
    $ 37.3万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 37.3万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 37.3万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 37.3万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 37.3万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 37.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了