SWIFT: Intelligent Spatio-Temporal Metamaterial Massive MIMO Aperture Arrays with Hybrid Learning-based Channel Classifiers for Spectrum-Efficient Secured Wireless Communication

SWIFT:智能时空超材料大规模 MIMO 孔径阵列,具有基于混合学习的信道分类器,可实现频谱高效的安全无线通信

基本信息

  • 批准号:
    2229384
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

For the next-generation network systems, it is envisioned that billions of mobile and Internet-of-Things (IoT) devices will communicate with each other to provide unprecedented connectivity in a highly smart and secure manner. It is thus of paramount importance to ensure spectrum utilization efficiency as well as physical-layer (PHY) security of mobile and IoT networks against any attack. While spectrum efficiency can be improved by using many antennas in a massive multiple-input multiple-output (MIMO) fashion, the power consumption, hardware complexity and cost will increase drastically as each antenna element requires a dedicated RF transceiver. In parallel, although end-to-end encrypted sessions between the edge devices and the gateway can be used for secure communications, high computational and battery burden of such cryptographic strategies are usually a concern in large-scale systems. To overcome these challenges, this research will harness the spatial dispersion control capability and introduce time modulation for subwavelength metamaterial (MTM) unit cells to create a new intelligent space-time modulated MTM (IST-MTM) antenna aperture, which not only can provide dynamic control of radiation characteristics allowing the optimal spectrum utilization, but also PHY secure transmission for wireless links enabled by directional modulation (DM). Moreover, a new hybrid model-based and learning-based approach (HyPhyLearn) will be incorporated to conduct channel classification even when limited training samples are available. The IST-MTM-based secure communication scheme along with the HyPhyLearn channel classifier will have a profound impact in next-generation wireless networks by providing a highly secured and spectrum-efficient communication scheme, which can be deployed in future 6G networks for smart homes/cities and vehicle-to-vehicle communications. By leveraging outreach activities at Rutgers University, the educational plan of this project aims to broaden participation of graduate, undergraduate and high school students, including underrepresented minority groups in STEM, in relevant research on microwave/antenna technologies, signal processing, machine learning, and wireless communications. Current state-of-the-art antenna systems have treated antennas as fixed radiator hardware, where extensive signal processing is required to achieve the desired specifications, e.g., cryptography-based security or digital beamforming, thereby increasing system cost and power consumption. Such fixed antenna hardware design also hinders the optimal utilization of the spectrum owing to the incapability of dynamically compensating channel effects, thereby reducing the spectral efficiency. Likewise, conventional data-driven classification methods used for authentication need large amount of sampling data to achieve a certain degree of accuracy. To address these issues, the research of IST-MTM MIMO antenna array with hybrid learning-based classifiers aims to achieve the following synergistic outcomes: (1) At the transmitter side, the IST-MTM antenna array will distort the signals towards unintended directions, resulting in a high bit-error-rate (BER) and thus preventing eavesdropping, while preserving the original signals along the directions for authenticated users, and thereby forming a secure communication link. Moreover, the IST-MTM antenna can reconfigure its dispersion characteristics through programming each sub-wavelength MTM unit cell for optimal spectral utilization. (2) At the receiver side, the HyPhyLearn method can conduct classification and authentication even with limited number of training samples to avoid spoofing attacks without the need of using additional spectrum, which is particularly useful for DM, since the transmission link of the IST-MTM array may result in limited training data. (3) In a multipath environment, DM may cause interference for legitimate users, resulting in a degradation in SNR. This multipath effect can be mitigated by using HyPhyLearn to perform accurate classification between desired signals and interference. As such, the unique integration of the IST-MTM array and HyPhyLearn will form a synergistic and complementary effect towards achieving spectrally efficient secured wireless communication networks in the future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对于下一代网络系统,预计数十亿移动和物联网 (IoT) 设备将相互通信,以高度智能和安全的方式提供前所未有的连接。因此,确保移动和物联网网络的频谱利用效率以及物理层 (PHY) 安全免受任何攻击至关重要。虽然可以通过以大规模多输入多输出 (MIMO) 方式使用许多天线来提高频谱效率,但由于每个天线元件都需要专用的射频收发器,因此功耗、硬件复杂性和成本将急剧增加。同时,尽管边缘设备和网关之间的端到端加密会话可用于安全通信,但此类加密策略的高计算和电池负担通常是大型系统中的一个问题。为了克服这些挑战,本研究将利用空间色散控制能力,并引入亚波长超材料(MTM)单元的时间调制,以创建新的智能时空调制MTM(IST-MTM)天线孔径,它不仅可以提供动态辐射特性控制可实现最佳频谱利用,而且还可通过定向调制 (DM) 实现无线链路的 PHY 安全传输。此外,即使在可用的训练样本有限的情况下,也将采用一种新的基于模型和基于学习的混合方法(HyPhyLearn)来进行通道分类。基于 IST-MTM 的安全通信方案与 HyPhyLearn 信道分类器将通过提供高度安全和频谱高效的通信方案,对下一代无线网络产生深远影响,该方案可部署在未来的 6G 网络中,用于智能家居/城市和车辆间通信。通过利用罗格斯大学的推广活动,该项目的教育计划旨在扩大研究生、本科生和高中生的参与,包括 STEM 中代表性不足的少数群体,参与微波/天线技术、信号处理、机器学习和无线通信。当前最先进的天线系统将天线视为固定辐射器硬件,需要进行大量信号处理才能实现所需的规格,例如基于密码的安全性或数字波束成形,从而增加了系统成本和功耗。这种固定天线硬件设计还由于无法动态补偿信道效应而阻碍了频谱的最佳利用,从而降低了频谱效率。同样,用于身份验证的传统数据驱动分类方法需要大量采样数据才能达到一定程度的准确性。为了解决这些问题,基于混合学习的分类器的 IST-MTM MIMO 天线阵列的研究旨在实现以下协同结果:(1)在发射机侧,IST-MTM 天线阵列会将信号扭曲到非预期方向,导致高误码率 (BER),从而防止窃听,同时保留经过身份验证的用户方向上的原始信号,从而形成安全的通信链路。此外,IST-MTM 天线可以通过对每个子波长 MTM 单元进行编程来重新配置其色散特性,以实现最佳频谱利用率。 (2)在接收端,HyPhyLearn方法即使在训练样本数量有限的情况下也可以进行分类和认证,以避免欺骗攻击,而无需使用额外的频谱,这对于DM特别有用,因为IST的传输链路MTM 阵列可能会导致训练数据有限。 (3)在多径环境下,DM可能会对合法用户造成干扰,导致信噪比下降。通过使用 HyPhyLearn 在所需信号和干扰之间执行准确分类,可以减轻这种多径效应。因此,IST-MTM阵列和HyPhyLearn的独特集成将形成协同和互补效应,以实现未来频谱高效的安全无线通信网络。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Programming Wireless Security Through Learning‐Aided Spatiotemporal Digital Coding Metamaterial Antenna
通过学习编程无线安全——辅助时空数字编码超材料天线
  • DOI:
    10.1002/aisy.202300341
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Nooraiepour, Alireza;Vosoughitabar, Shaghayegh;Wu, Chung;Bajwa, Waheed U.;Mandayam, Narayan B.
  • 通讯作者:
    Mandayam, Narayan B.
Directional Modulation Retrodirective Array-Enabled Physical Layer Secured Transponder for Protected Wireless Data Acquisition
用于受保护的无线数据采集的定向调制反向阵列物理层安全应答器
Programming nonreciprocity and harmonic beam steering via a digitally space-time-coded metamaterial antenna
通过数字空时编码超材料天线对非互易性和谐波波束控制进行编程
  • DOI:
    10.1038/s41598-023-34195-8
  • 发表时间:
    2023-05-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Vosoughitabar, Shaghayegh;Wu, Chung
  • 通讯作者:
    Wu, Chung
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chung-Tse Wu其他文献

Chung-Tse Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chung-Tse Wu', 18)}}的其他基金

Travel: Student Travel Support for 2024 IEEE Radio & Wireless Week (RWW)
旅行:2024 年 IEEE 广播学生旅行支持
  • 批准号:
    2329626
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
EAGER: SARE: Directional Modulation Non-Contiguous OFDM Retrodirective Communication for Secure IoT
EAGER:SARE:用于安全物联网的定向调制非连续 OFDM 反向通信
  • 批准号:
    2028823
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Graduate Student Travel Support for 2019 International Conference on Microwaves for Intelligent Mobility (ICMIM)to be held in Detroit, Michigan, April 15-16, 2019.
2019 年智能移动微波国际会议 (ICMIM) 研究生旅行支持将于 2019 年 4 月 15 日至 16 日在密歇根州底特律举行。
  • 批准号:
    1912499
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CAREER: Spectrally-Encoded Ultrafast Microwave Panoramic Camera
职业:光谱编码超快微波全景相机
  • 批准号:
    1818478
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CAREER: Spectrally-Encoded Ultrafast Microwave Panoramic Camera
职业:光谱编码超快微波全景相机
  • 批准号:
    1552958
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似国自然基金

大智慧还是小聪明?绩效压力对创造性绩效的双面效应机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    47 万元
  • 项目类别:
从"聪明基因"NR2B途径探讨α2肾上腺素受体激动剂对血管性痴呆大鼠认知功能的调节作用
  • 批准号:
    81100873
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fouille de données spatio-temporelles et multidimensionnelles pour la reconnaissance d'activités: habitat intelligent
Fouille de données 时空和多维活动侦察:智能栖息地
  • 批准号:
    203217-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Grants Program - Individual
Fouille de données spatio-temporelles et multidimensionnelles pour la reconnaissance d'activités: habitat intelligent
Fouille de données 时空和多维活动侦察:智能栖息地
  • 批准号:
    203217-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Grants Program - Individual
Fouille de données spatio-temporelles et multidimensionnelles pour la reconnaissance d'activités: habitat intelligent
Fouille de données 时空和多维活动侦察:智能栖息地
  • 批准号:
    203217-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Grants Program - Individual
Fouille de données spatio-temporelles et multidimensionnelles pour la reconnaissance d'activités: habitat intelligent
Fouille de données 时空和多维活动侦察:智能栖息地
  • 批准号:
    203217-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Grants Program - Individual
Fouille de données spatio-temporelles et multidimensionnelles pour la reconnaissance d'activités: habitat intelligent
Fouille de données 时空和多维活动侦察:智能栖息地
  • 批准号:
    203217-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了