EAGER: SARE: Directional Modulation Non-Contiguous OFDM Retrodirective Communication for Secure IoT

EAGER:SARE:用于安全物联网的定向调制非连续 OFDM 反向通信

基本信息

  • 批准号:
    2028823
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

In the upcoming era of the Internet-of-Things (IoT), billions of physical devices will be networked together and enable emerging concepts, such as smart homes and smart cities, leading to new paradigms for connected human societies. As such, devices such as intelligent sensors and controllers—often operating on small-capacity batteries and running applications on ultra-low-power processors—will need to be able to communicate with each other, while being connected to the internet cloud. In this scenario, IoT gateways serve as an essential component in bridging IoT devices and the internet. As the IoT gateways will need to deal with critical tasks at the edge IoT devices, it is essential to ensure secure communication links between the gateway and the devices against any spoofing attacks by adversarial entities. Since end-to-end encrypted sessions between the edge devices and the gateway cannot be relied upon for secure communications due to the high computational resource demand and battery burden of such cryptographic strategies, there is an urgent need to develop physical-layer (PHY) secure communication schemes. To this end, this project develops a directional modulation non-contiguous orthogonal frequency division multiplexing (NC-OFDM) retrodirective communication scheme that will have a profound impact in securing IoT applications. The outcome of this project will enable a highly secure PHY communication scheme among the IoT devices and gateways against malicious spoofing attacks. Furthermore, the unique combination of NC-OFDM and directional modulation retrodirective array will make such attacks very unlikely to succeed even with sophisticated machine learning (ML) techniques. In addition, the educational plan of the project aims to broaden participation of graduate, undergraduate and high school students, including underrepresented minority groups, in relevant research on microwave and antenna technologies, signal processing and ML, and wireless communications.In terms of technical details, the research project addresses a critical security issue in IoT applications that are susceptible to malicious spoofing attacks via an innovative PHY solution combining NC-OFDM transmission and a directional modulation retrodirective array. As compared with traditional OFDM transmissions, NC-OFDM transmissions take place over a subset of active subcarriers to either avoid incumbent transmissions or for strategic considerations. As such, NC-OFDM transmissions have low probability of exploitation characteristics against classic attacks based on cyclostationary analysis. On the other hand, retrodirective antenna arrays are well known to be able to respond to an interrogator by sending signals back to the interrogator location without a priori knowledge, which is particularly useful in a multipath-rich environment. By incorporating the directional modulation technique, the antenna array will corrupt the information by distorting the digital modulation’s constellation diagrams in all unwanted transmitting directions. One way to realize the directional modulation functionality is to use time-modulated antenna arrays, in which the aliasing effects resulting from the time-modulation frequency are used to distort the signals in the undesired directions. Furthermore, the unique integration of NC-OFDM and directional modulation enabled by a time-modulated retrodirective antenna array whose modulation frequency is the NC-OFDM subcarrier can potentially lead to an unprecedented level of PHY hardware security against spoofing attacks by an adversary, even when the adversary is equipped with sophisticated ML-based attack techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在即将到来的物联网 (IoT) 时代,数十亿物理设备将联网,并实现智能家居和智能城市等新兴概念,从而为互联人类社会带来新的范例。由于智能传感器和控制器(通常使用小容量电池运行并在超低功耗处理器上运行应用程序)需要能够相互通信,同时连接到互联网云。在这种情况下,物联网网关发挥作用。作为一个重要组成部分由于物联网网关需要处理边缘物联网设备的关键任务,因此必须确保网关和设备之间的安全通信免受敌对实体的任何欺骗攻击。由于这种加密策略的高计算资源需求和电池负担,边缘设备和网关之间的终端加密会话不能依赖于安全通信,因此迫切需要开发物理层(PHY)安全通信方案。这结束,该项目开发了一种定向调制非连续正交频分复用(NC-OFDM)反向通信方案,该方案将对确保物联网应用的安全产生深远影响。该项目的成果将在物联网设备和设备之间实现高度安全的 PHY 通信方案。此外,NC-OFDM 和定向调制反向阵列的独特组合将使此类攻击即使使用复杂的机器学习 (ML) 技术也不太可能成功。该项目的教育计划旨在扩大研究生、本科生和高中生(包括代表性不足的少数群体)参与微波和天线技术、信号处理和机器学习以及无线通信的相关研究。在技术细节方面,该研究项目通过结合 NC-OFDM 传输和定向调制反向阵列的创新 PHY 解决方案,解决了物联网应用中容易受到恶意欺骗攻击的关键安全问题。与传统 OFDM 传输相比,NC-OFDM 传输发生在一个子集上。出于避免现有传输或出于战略考虑的目的,NC-OFDM 传输具有针对基于循环平稳分析的经典攻击的低概率特征,而众所周知,反向天线阵列能够​​做出响应。在没有先验知识的情况下将信号发送回询问器位置,这在多路径丰富的环境中特别有用通过结合定向调制技术,天线阵列将通过扭曲数字来破坏信息。实现定向调制功能的一种方法是使用时间调制天线阵列,其中时间调制频率产生的混叠效应用于使信号在不需要的方向上失真。 NC-OFDM 和定向调制的独特集成是由时间调制反向天线阵列实现的,其调制频率是 NC-OFDM 子载波,这可能会带来前所未有的水平即使对手配备了复杂的基于 ML 的攻击技术,PHY 硬件也能安全抵御对手的欺骗攻击。该奖项授予 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Directional Modulation Retrodirective Array-Enabled Physical Layer Secured Transponder for Protected Wireless Data Acquisition
用于受保护的无线数据采集的定向调制反向阵列物理层安全应答器
Programming nonreciprocity and harmonic beam steering via a digitally space-time-coded metamaterial antenna
通过数字空时编码超材料天线对非互易性和谐波波束控制进行编程
  • DOI:
    10.1038/s41598-023-34195-8
  • 发表时间:
    2023-03-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Shaghayegh Vosoughitabar;C. Wu
  • 通讯作者:
    C. Wu
Frequency dependent parametric radiation through a nonlinear fundamentally slow travelling wave structure
通过非线性慢行波结构的频率相关参量辐射
Hyphylearn: A Domain Adaptation-Inspired Approach to Classification Using Limited Number of Training Samples
Hyphylearn:使用有限数量的训练样本进行领域适应启发的分类方法
A Hybrid Model-Based and Learning-Based Approach for Classification Using Limited Number of Training Samples
使用有限数量的训练样本进行基于模型和学习的混合分类方法
  • DOI:
    10.1109/ojsp.2021.3135254
  • 发表时间:
    2021-06-25
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Alireza Nooraiepour;W. Bajwa;N. M;ayam;ayam
  • 通讯作者:
    ayam
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chung-Tse Wu其他文献

Chung-Tse Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chung-Tse Wu', 18)}}的其他基金

Travel: Student Travel Support for 2024 IEEE Radio & Wireless Week (RWW)
旅行:2024 年 IEEE 广播学生旅行支持
  • 批准号:
    2329626
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SWIFT: Intelligent Spatio-Temporal Metamaterial Massive MIMO Aperture Arrays with Hybrid Learning-based Channel Classifiers for Spectrum-Efficient Secured Wireless Communication
SWIFT:智能时空超材料大规模 MIMO 孔径阵列,具有基于混合学习的信道分类器,可实现频谱高效的安全无线通信
  • 批准号:
    2229384
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SWIFT: Intelligent Spatio-Temporal Metamaterial Massive MIMO Aperture Arrays with Hybrid Learning-based Channel Classifiers for Spectrum-Efficient Secured Wireless Communication
SWIFT:智能时空超材料大规模 MIMO 孔径阵列,具有基于混合学习的信道分类器,可实现频谱高效的安全无线通信
  • 批准号:
    2229384
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Graduate Student Travel Support for 2019 International Conference on Microwaves for Intelligent Mobility (ICMIM)to be held in Detroit, Michigan, April 15-16, 2019.
2019 年智能移动微波国际会议 (ICMIM) 研究生旅行支持将于 2019 年 4 月 15 日至 16 日在密歇根州底特律举行。
  • 批准号:
    1912499
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Spectrally-Encoded Ultrafast Microwave Panoramic Camera
职业:光谱编码超快微波全景相机
  • 批准号:
    1818478
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Spectrally-Encoded Ultrafast Microwave Panoramic Camera
职业:光谱编码超快微波全景相机
  • 批准号:
    1552958
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: SARE: Collaborative: Low Energy Secure Wireless Transceivers for IoT Trusted Communications
EAGER:SARE:协作:用于物联网可信通信的低能耗安全无线收发器
  • 批准号:
    2029461
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Secure LiDAR Systems with Frequency Encryption
EAGER:SARE:具有频率加密功能的安全 LiDAR 系统
  • 批准号:
    2028406
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Detecting Zero-Day Side-channel Attacks in Sensor Rich Cyber-Physical Systems
EAGER:SARE:检测传感器丰富的网络物理系统中的零日旁道攻击
  • 批准号:
    2028782
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Physically disordered nanostructures for lightweight and secure authentication on CMOS platform
EAGER:SARE:物理无序纳米结构,可在 CMOS 平台上实现轻量级安全身份验证
  • 批准号:
    2028997
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Collaborative Research: Exploring and Mitigating Attacks of Millimeter-wave Radar Sensors in Autonomous Vehicles
EAGER:SARE:协作研究:探索和减轻自动驾驶汽车中毫米波雷达传感器的攻击
  • 批准号:
    2028863
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了