FMRG: Cyber: Scalable Precision Manufacturing of Programmable Polymer Nanoparticles Using Low-temperature Initiated Chemical Vapor Deposition Guided by Artificial Intelligence
FMRG:网络:利用人工智能引导的低温引发化学气相沉积进行可编程聚合物纳米粒子的可扩展精密制造
基本信息
- 批准号:2229092
- 负责人:
- 金额:$ 300万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Polymer nanoparticles have a broad range of significant applications, including drug delivery, soft robotics and nanomedicine, etc. However, existing manufacturing of such materials are limited by batch production, quality variability and a narrow range of particle functionality, resulting in a slow development cycle, often decade long, for new materials, recipes, and use at scale. To enable a future technology in manufacturing versatile polymer nanoparticles, it is necessary to radically change such a paradigm into one that enables data-driven decision-making for processing conditions. This unique future manufacturing research grant (FMRG) will advance fundamental research in the principles for continuous and highly reproducible manufacturing of polymer nanoparticles with an expanded palette of sizes, shapes and chemical functionalities for wide-ranging applications in various industries. The new paradigm for the studied cyber-manufacturing of polymer nanoparticles will be achieved through critical breakthroughs in chemical-vapor-deposition based continuous synthesis and in-line characterization of polymeric nanostructures, integrated using artificial intelligence (AI)-guided selections of complex processing conditions. This research, if successful, will unlock vast design space for future nanomedicine, with a potential to substantially impact the healthcare industry and improve the quality of life of the society by and large. Moreover, to prepare a diverse workforce for future manufacturing advancements, rigorous education research across an academic lifespan, from K-12 outreach to undergraduate and graduate education, as well as industry engagements, the team will establish a framework to understand identity-based motivation, which may in turn lead to broadened participation in STEM.The overall goal of this future manufacturing research is to develop and investigate a novel paradigm to revolutionize manufacturing of polymer nanomaterials by integrating continuous processing, in-line characterization and AI-enabled accelerated data analysis to guide the production of programmed polymer nanoparticles. The core of this future manufacturing technology, also the key innovation, is a low-temperature initiated chemical vapor deposition (iCVD) polymerization with the use of gradient-surface-templated liquid crystals, which will leave optical fingerprints of fabricated features (spatial and temporal) that can be utilized for precision computer-vision image and data acquisitions. The high-throughput experimental data will be employed to train a convolutional neural network to identify the size, shape and chemistry of polymer particles. The neural network will be further tested with separate data sets for validations to achieve AI-accelerated analytics and processing decision making. The outcome of the interdisciplinary research will generate new knowledge in iCVD, processing monitoring and mechanism using cyber-driven approaches. The findings are expected to enable the novel manufacturing technology, scalable and modular, for unprecedented polymer structures, unachievable by traditional manufacturing means.This FMRG is supported by the Divisions of Civil, Mechanical and Manufacturing Innovation (ENG/CMMI), Mathematical Sciences (MPS/DMS), Chemistry (MPS/CHE), Engineering Education and Centers (ENG/EEC), and the Division of Undergraduate Education (EHR/DUE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
聚合物纳米颗粒具有广泛的重要应用,包括药物输送、软机器人和纳米医学等。然而,此类材料的现有制造受到批量生产、质量变异性和颗粒功能范围窄的限制,导致开发周期缓慢,通常长达十年,用于新材料、配方和大规模使用。为了实现制造多功能聚合物纳米粒子的未来技术,有必要从根本上将这种范式转变为能够针对加工条件进行数据驱动决策的范式。这项独特的未来制造研究补助金 (FMRG) 将推进聚合物纳米粒子连续和高度可重复制造原理的基础研究,该纳米粒子具有扩展的尺寸、形状和化学功能,可在各个行业中广泛应用。聚合物纳米颗粒网络制造研究的新范式将通过基于化学气相沉积的连续合成和聚合物纳米结构在线表征的关键突破,并使用人工智能(AI)引导的复杂加工条件选择进行集成来实现。这项研究如果成功,将为未来纳米医学释放巨大的设计空间,有可能对医疗保健行业产生重大影响,并总体上改善社会的生活质量。此外,为了为未来的制造业进步、从 K-12 推广到本科和研究生教育以及行业参与的整个学术生命周期的严格教育研究做好准备,为多样化的劳动力做好准备,该团队将建立一个框架来理解基于身份的动机,这可能反过来会扩大对 STEM 的参与。这项未来制造研究的总体目标是开发和研究一种新颖的范例,通过集成连续处理、在线表征和人工智能加速数据分析来彻底改变聚合物纳米材料的制造指导程序制作聚合物纳米颗粒。这种未来制造技术的核心,也是关键的创新,是使用梯度表面模板液晶的低温引发化学气相沉积(iCVD)聚合,这将留下制造特征(空间和时间)的光学指纹。 )可用于精确的计算机视觉图像和数据采集。高通量实验数据将用于训练卷积神经网络来识别聚合物颗粒的尺寸、形状和化学性质。神经网络将使用单独的数据集进行进一步测试以进行验证,以实现人工智能加速分析和处理决策。跨学科研究的成果将产生 iCVD、加工监控和使用网络驱动方法的机制方面的新知识。研究结果预计将为前所未有的聚合物结构提供可扩展和模块化的新型制造技术,这是传统制造手段无法实现的。该 FMRG 得到土木、机械和制造创新部门 (ENG/CMMI)、数学科学部门 (MPS) 的支持/DMS)、化学(MPS/CHE)、工程教育和中心(ENG/EEC)以及本科教育部(EHR/DUE)。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rong Yang其他文献
Acute stress enhances learning and memory by activating acid-sensing ion channels in rats.
急性应激通过激活大鼠的酸敏感离子通道来增强学习和记忆。
- DOI:
10.1016/j.bbrc.2018.03.122 - 发表时间:
2018-04-15 - 期刊:
- 影响因子:3.1
- 作者:
Shunjie Ye;Rong Yang;Qiu;You;Lianying Zhou;Yeli Gong;Changlei Li;Zhenhan Ding;Guohai Ye;Z. Xiong - 通讯作者:
Z. Xiong
Macro-microporous carbon with a three-dimensional channel skeleton derived from waste sunflower seed shells for sustainable room-temperature sodium sulfur batteries
具有三维通道骨架的大微孔碳,源自废弃葵花籽壳,用于可持续室温钠硫电池
- DOI:
10.1016/j.jallcom.2020.157316 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:6.2
- 作者:
Y. Liu;Xueying Li;Yuanzheng Sun;Rong Yang;Younki Lee;Jou‐Hyeon Ahn - 通讯作者:
Jou‐Hyeon Ahn
Williams-Beuren syndrome in pediatric T-cell acute lymphoblastic leukemia: A rare case report and review of literature
小儿 T 细胞急性淋巴细胞白血病中的 Williams-Beuren 综合征:罕见病例报告及文献综述
- DOI:
10.1097/md.0000000000036976 - 发表时间:
2024-02-16 - 期刊:
- 影响因子:1.6
- 作者:
Rong Yang;Yuan Ai;Ting Bai;Xiao;Guo - 通讯作者:
Guo
Reversal of new-onset type 1 diabetes in mice by syngeneic bone marrow transplantation.
通过同基因骨髓移植逆转小鼠新发 1 型糖尿病。
- DOI:
10.1016/j.bbrc.2008.07.016 - 发表时间:
2008-09-19 - 期刊:
- 影响因子:3.1
- 作者:
Y. Wen;Ouyang Jian;Rong Yang;Jun;Yong Liu;Xiaojun Zhou;R. Burt - 通讯作者:
R. Burt
Dual-emissive transition-metal complexes and their applications as ratiometric photoluminescent probes
双发射过渡金属配合物及其作为比率光致发光探针的应用
- DOI:
10.1360/ssc-2019-0151 - 发表时间:
2020-01-03 - 期刊:
- 影响因子:0
- 作者:
Si;Zhongliang Gong;Jiang‐Yang Shao;Rong Yang;Yu‐Wu Zhong - 通讯作者:
Yu‐Wu Zhong
Rong Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rong Yang', 18)}}的其他基金
CAREER: Solvent-Free Synthesis of Polymeric Nanostructures with Targeted Properties
职业:无溶剂合成具有目标性能的聚合物纳米结构
- 批准号:
2144171 - 财政年份:2022
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
相似国自然基金
递归神经网络在FPGA上低功耗、可扩展、分布式的实现
- 批准号:62311530099
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
基于复杂网络和人工智能技术的可扩展智能决策模型研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模复杂动态网络可扩展与可泛化表征学习研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于可扩展量子纠缠网络的设备无关量子信息安全模型研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
面向新模型的深度神经网络求解器的共性组件关键技术研究:算法与性能提升
- 批准号:61876175
- 批准年份:2018
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
- 批准号:
2313738 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
- 批准号:
2212256 - 财政年份:2022
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
Fingerprinting and Big Data Security Analytics for the Scalable Generation of Cyber Threat Intelligence
用于可扩展生成网络威胁情报的指纹识别和大数据安全分析
- 批准号:
RGPIN-2017-06650 - 财政年份:2022
- 资助金额:
$ 300万 - 项目类别:
Discovery Grants Program - Individual
Practical, Efficient and Scalable Modeling, Verification and Validation of Safety-Critical Cyber-Physical Systems
安全关键网络物理系统的实用、高效和可扩展的建模、验证和确认
- 批准号:
RGPIN-2020-06751 - 财政年份:2022
- 资助金额:
$ 300万 - 项目类别:
Discovery Grants Program - Individual
Fingerprinting and Big Data Security Analytics for the Scalable Generation of Cyber Threat Intelligence
用于可扩展生成网络威胁情报的指纹识别和大数据安全分析
- 批准号:
RGPIN-2017-06650 - 财政年份:2022
- 资助金额:
$ 300万 - 项目类别:
Discovery Grants Program - Individual