Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices

合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架

基本信息

  • 批准号:
    2311949
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

As quantum computers consistently scale up with more qubits, the development of practical and real-world applications using quantum computing has become a crucial frontier for quantum information scientists and technologists, which benefits other scientists and end-users across a wide range of disciplines. Quantum learning, a combination of quantum computing and machine learning and also known as Variational Quantum Algorithm (VQA), is one of the most promising approaches to be applied to a variety of practical problems. Quantum learning is a hybrid quantum-classical protocol that optimizes parameters in a Variational Quantum Circuit (VQC) with a cost function using a classical training optimizer. However, the inherent noise on quantum devices brings severe deployability and portability issues, making the optimized VQCs suffer significant performance degradation in deploying or porting among different quantum computers. What is more, the noise on the quantum devices changes over time, known as unstable noise, fluctuating noise, or drift of noise, which prevents the reuse of VQCs on one quantum computer at different times and even misleads the learning to a non-optimal path when noise change during the VQC training process. This project aims to enable temporal-reliable quantum learning by generating fundamental understandings and practical approaches in quantum learning, uncertainty prediction, noise suppression, and system visualization. Outcomes are evaluated using quantum learning for scientific applications on the DoE-sponsored supercomputing centers that provide access to various commercial quantum computing resources. With the objective of facilitating practical quantum learning, this project uses a systematic and innovative approach to develop an integrated framework, which presents the novelty of the proposed research, practical value, and domain impacts: (1) developing a novel compression-based error adaptor to adjust the parameters and structure of VQC according to the fluctuating quantum noise, such that the VQC can effectively and efficiently adapt to the present quantum noise; (2) building an uncertainty predictor to quantify the deployability of a given pair of VQC and quantum processor, such that users can be aware of performance change; (3) designing a novel visualization tool with scalability to portray the impact of noise on the performance of a given VQC; and (4) the developed toolset is finally integrated into a scientific application, real-time earthquake detection, which can provide insights into identifying real-world tasks where quantum technologies may offer a promising solution. The education impacts of this project include the tutorials on the developed software tools to guide and encourage the domain researchers to leverage the advanced quantum computing cyberinfrastructure; the integration of research to the quantum summer program from the Potomac Quantum Innovation Center for high school seniors; and the development of new undergraduate and graduate courses for quantum workforce training.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着量子计算机不断扩展到更多的量子位,使用量子计算开发实际和现实世界的应用程序已成为量子信息科学家和技术人员的关键前沿,这使各个学科的其他科学家和最终用户受益。量子学习是量子计算和机器学习的结合,也称为变分量子算法(VQA),是最有希望应用于各种实际问题的方法之一。量子学习是一种混合量子经典协议,它使用经典训练优化器通过成本函数来优化变分量子电路 (VQC) 中的参数。然而,量子设备固有的噪声带来了严重的可部署性和可移植性问题,使得优化后的VQC在不同量子计算机之间部署或移植时性能显着下降。更重要的是,量子设备上的噪声随着时间的推移而变化,称为不稳定噪声、波动噪声或噪声漂移,这阻碍了 VQC 在一台量子计算机上不同时间的重复使用,甚至将学习误导到非最佳状态。 VQC训练过程中噪声变化时的路径。该项目旨在通过在量子学习、不确定性预测、噪声抑制和系统可视化方面产生基本理解和实用方法来实现时间可靠的量子学习。使用量子学习在美国能源部资助的超级计算中心的科学应用中评估结果,这些中心提供对各种商业量子计算资源的访问。为了促进实用的量子学习,该项目采用系统和创新的方法来开发一个集成框架,该框架展示了所提出的研究的新颖性、实用价值和领域影响:(1)开发一种新颖的基于压缩的误差适配器根据波动的量子噪声调整VQC的参数和结构,使得VQC能够有效且高效地适应当前的量子噪声; (2) 构建不确定性预测器来量化给定的 VQC 和量子处理器对的可部署性,以便用户能够了解性能变化; (3) 设计一种具有可扩展性的新型可视化工具,以描绘噪声对给定 VQC 性能的影响; (4)开发的工具集最终被集成到科学应用程序中,即实时地震检测,它可以为识别现实世界的任务提供见解,而量子技术可能会在这些任务中提供有前途的解决方案。该项目的教育影响包括开发软件工具的教程,以指导和鼓励领域研究人员利用先进的量子计算网络基础设施;将研究整合到波托马克量子创新中心针对高中生的量子夏季项目;该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weiwen Jiang其他文献

Can Noise on Qubits Be Learned in Quantum Neural Network? A Case Study on QuantumFlow (Invited Paper)
量子神经网络中可以学习量子比特上的噪声吗?
On the Design of Reliable Heterogeneous Systems via Checkpoint Placement and Core Assignment
基于检查点放置和核心分配的可靠异构系统设计
  • DOI:
    10.1145/3194554.3194642
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Sha;Hailiang Dong;Weiwen Jiang;Qingfeng Zhuge;Xianzhang Chen;Lei Yang
  • 通讯作者:
    Lei Yang
Privacy-Preserving Medical Image Segmentation via Hybrid Trusted Execution Environment
通过混合可信执行环境进行隐私保护的医学图像分割
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Song Bian;Weiwen Jiang;and Takashi Sato
  • 通讯作者:
    and Takashi Sato
Toward Consistent High-Fidelity Quantum Learning on Unstable Devices via Efficient In-Situ Calibration
通过高效的原位校准在不稳定设备上实现一致的高保真量子学习
Enhancing immunogenicity by CpG DNA.
通过 CpG DNA 增强免疫原性。

Weiwen Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weiwen Jiang', 18)}}的其他基金

CyberTraining: Pilot: Quantum Research Workforce Development on End-to-End Quantum Systems Integration
网络培训:试点:端到端量子系统集成的量子研究劳动力发展
  • 批准号:
    2320957
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似国自然基金

基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
  • 批准号:
    52373161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
  • 批准号:
    82304416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
  • 批准号:
    82373255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
  • 批准号:
    82300623
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402947
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了