Frameworks: Data-Driven Software Infrastructure for Next-Generation Molecular Simulations

框架:下一代分子模拟的数据驱动软件基础设施

基本信息

  • 批准号:
    2311260
  • 负责人:
  • 金额:
    $ 292.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

This project focuses on the development and optimization of the MB-Fit/MBX software infrastructure, a tool designed to advance the field of molecular simulations. By providing a machine-learned representation of molecular interactions, the software provides researchers worldwide with the possibility to model and predict the behavior of complex systems at the molecular level with unprecedented accuracy. As an open-source tool, MB-Fit/MBX not only promotes the progress of science by encouraging contributions from researchers worldwide but also democratizes access to cutting-edge computational tools. The project is committed to fostering education and diversity through the organization of workshops and training programs, thereby creating a vibrant community of users and developers. These initiatives include undergraduate summer research programs and collaborations with Historically Black Colleges and Universities (HBCUs), which aim to attract students to computational molecular sciences and promote STEM disciplines in underrepresented and underprivileged communities. The significance of this project is underscored by its potential to advance scientific knowledge and contribute to national progress by providing a tool with wide-ranging applications. From drug design to materials science, the MB-Fit/MBX software infrastructure is poised to catalyze breakthroughs across various scientific domains. The project also includes a blog that highlights all scientific accomplishments and new discoveries enabled by the MB-Fit/MBX software infrastructure. This platform not only disseminates the project's achievements but also helps to raise the visibility of contributors in the community, thereby fostering a culture of recognition and collaboration.The primary goals of this project include the development of the MBX-Fit/MBX software infrastructure for data-driven many-body molecular simulations, acceleration of computationally intensive terms to GPU accelerators, and integration of the MBX-Fit/MBX software with LAMMPS, i-PI, and RASPA, which are widely used open-source software for molecular simulations. The project also aims to enhance the scalability of the iterative electrostatic solver in MBX and develop mini-apps for efficient evaluation of PIPs on CPUs and GPU accelerators. The project employs a variety of methods and approaches, including machine learning, high-performance computing, and open-source software development. Specifically, the project will explore multi-partition algorithms where a subset of the CPUs will be tasked with computing the 3D FFTs, providing additional opportunities for performance optimization. The development of mini-apps will be a key element of the software design strategy, enabling rapid algorithm development and performance measurement on target architectures. The project will also focus on performance tuning and optimization guided by profiling tools, with a particular focus on achieving better performance with code refactoring. As a result, this project will enable more accurate and efficient molecular simulations, foster a community of users and developers, and provide a platform for training and education in the field. The progress and achievements of the project will be disseminated through a blog that highlights scientific accomplishments and new discoveries enabled by the MB-Fit/MBX software infrastructure. The project also includes a manual on the MB-Fit/MBX website, providing comprehensive guidance for users and developers. The project will benefit from periodic interactions with LAMMPS, i-PI, and RASPA developers to ensure the best performance of the MBX/LAMMPS, MBX/i-PI, and MBX/RASPA interfaces. The project's broader impacts include the organization of workshops and training programs, undergraduate summer research programs, and collaborations with Historically Black Colleges and Universities (HBCUs), all aimed at promoting STEM disciplines in underrepresented and underprivileged communities.This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Division of Chemistry within the Directorate for Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目着重于MB-FIT/MBX软件基础结构的开发和优化,该工具旨在推进分子模拟领域。通过提供分子相互作用的机器学习的表示,该软件为全球研究人员提供了以前所未有的精度在分子水平上建模和预测复杂系统的行为的可能性。作为一种开源工具,MB-FIT/MBX不仅通过鼓励全球研究人员的贡献来促进科学的进步,而且还使获得尖端计算工具的访问权力。该项目致力于通过组织研讨会和培训计划来促进教育和多样性,从而创建一个充满活力的用户和开发人员社区。这些举措包括夏季研究计划以及与历史悠久的黑人学院(HBCUS)的合作,旨在吸引学生进入计算分子科学,并促进代表性不足和弱势社区的STEM学科。该项目的重要性是由于其潜力通过提供广泛应用程序的工具来提高科学知识并为国家进步做出贡献的潜力。从药物设计到材料科学,MB-FIT/MBX软件基础设施有望催化各种科学领域的突破。该项目还包括一个博客,该博客突出了MB-FIT/MBX软件基础架构实现的所有科学成就和新发现。 This platform not only disseminates the project's achievements but also helps to raise the visibility of contributors in the community, thereby fostering a culture of recognition and collaboration.The primary goals of this project include the development of the MBX-Fit/MBX software infrastructure for data-driven many-body molecular simulations, acceleration of computationally intensive terms to GPU accelerators, and integration of the MBX-Fit/MBX software使用LAMMPS,I-PI和RASPA,它们是用于分子模拟的开源软件。该项目还旨在增强MBX中迭代静电求解器的可扩展性,并开发用于有效评估CPU和GPU加速器PIP的小型应用程序。该项目采用各种方法和方法,包括机器学习,高性能计算和开源软件开发。具体而言,该项目将探索多分区算法,其中CPU的子集将任务计算3D FFT,从而为性能优化提供了其他机会。小型应用程序的开发将是软件设计策略的关键要素,从而实现了目标架构的快速算法开发和性能测量。该项目还将着重于通过分析工具指导的性能调整和优化,特别着眼于通过代码重构实现更好的性能。结果,该项目将启用更准确,高效的分子模拟,培养用户和开发人员社区,并为该领域的培训和教育提供平台。该项目的进度和成就将通过博客传播,该博客突出了MB-FIT/MBX软件基础架构实现的科学成就和新发现。该项目还包括MB-FIT/MBX网站上的手册,为用户和开发人员提供全面的指导。该项目将受益于与LAMMP,I-PI和RASPA开发人员的定期互动,以确保MBX/LAMMP,MBX/I-PI和MBX/RASPA接口的最佳性能。 The project's broader impacts include the organization of workshops and training programs, undergraduate summer research programs, and collaborations with Historically Black Colleges and Universities (HBCUs), all aimed at promoting STEM disciplines in underrepresented and underprivileged communities.This award by the Office of Advanced Cyber​​infrastructure is jointly supported by the Division of Chemistry within the Directorate for Mathematical and Physical Sciences.This award reflects NSF的法定使命,并使用基金会的知识分子优点和更广泛的影响审查标准来评估值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francesco Paesani其他文献

Rationalizing the Effect of Mutations on the Editing Efficiency of Adenine Base Editors
  • DOI:
    10.1016/j.bpj.2019.11.1687
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Kartik Lakshmi Rallapalli;Francesco Paesani;Alexis Komor
  • 通讯作者:
    Alexis Komor
Many-body potential for simulating the self-assembly of polymer-grafted nanoparticles in a polymer matrix
模拟聚合物基体中聚合物接枝纳米颗粒自组装的多体潜力
  • DOI:
    10.1038/s41524-023-01166-6
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Yilong Zhou;S. Bore;Andrea R. Tao;Francesco Paesani;Gaurav Arya
  • 通讯作者:
    Gaurav Arya
Making Ice from Stacking-Disordered Crystallites
  • DOI:
    10.1016/j.chempr.2017.12.002
  • 发表时间:
    2017-12-14
  • 期刊:
  • 影响因子:
  • 作者:
    Francesco Paesani
  • 通讯作者:
    Francesco Paesani

Francesco Paesani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francesco Paesani', 18)}}的其他基金

Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321104
  • 财政年份:
    2024
  • 资助金额:
    $ 292.81万
  • 项目类别:
    Standard Grant
Disentangling Many-Body Effects and Coupling in the Vibrational Spectra of Aqueous Clusters
解开水团簇振动谱中的多体效应和耦合
  • 批准号:
    2102309
  • 财政年份:
    2021
  • 资助金额:
    $ 292.81万
  • 项目类别:
    Standard Grant
Data-Driven Many-Body Models for Molecular Simulations of Ions in Water: From Ionic Clusters to Concentrated Electrolyte Solutions
用于水中离子分子模拟的数据驱动多体模型:从离子簇到浓缩电解质溶液
  • 批准号:
    1954895
  • 财政年份:
    2020
  • 资助金额:
    $ 292.81万
  • 项目类别:
    Standard Grant
Molecular Characterization of Water Oxidation in Metal-Organic Frameworks through Computer Simulations
通过计算机模拟对金属有机框架中的水氧化进行分子表征
  • 批准号:
    1704063
  • 财政年份:
    2018
  • 资助金额:
    $ 292.81万
  • 项目类别:
    Standard Grant
SI2-SSE: Enabling Chemical Accuracy in Computer Simulations: An Integrated Software Platform for Many-Body Molecular Dynamics
SI2-SSE:实现计算机模拟中的化学准确性:多体分子动力学集成软件平台
  • 批准号:
    1642336
  • 财政年份:
    2017
  • 资助金额:
    $ 292.81万
  • 项目类别:
    Standard Grant
CAREER: Many-body Ab initio Potentials and Quantum Dynamics Methods for "First Principles" Simulations in Solution: Hydration, Vibrational Spectroscopy, & Proton Transfer/Trans
职业:解决方案中“第一原理”模拟的多体从头计算势和量子动力学方法:水合、振动光谱、
  • 批准号:
    1453204
  • 财政年份:
    2015
  • 资助金额:
    $ 292.81万
  • 项目类别:
    Standard Grant
Computer Modeling of Proton Conduction in Metal-Organic Frameworks
金属有机框架中质子传导的计算机建模
  • 批准号:
    1305101
  • 财政年份:
    2013
  • 资助金额:
    $ 292.81万
  • 项目类别:
    Continuing Grant
Molecular simulations of water uptake and nitrogen oxides reactions on aerosol surfaces
气溶胶表面吸水和氮氧化物反应的分子模拟
  • 批准号:
    1111364
  • 财政年份:
    2011
  • 资助金额:
    $ 292.81万
  • 项目类别:
    Continuing Grant

相似国自然基金

可解释AI框架下知识与数据协同驱动的ICU危重症亚型识别及预后预测方法研究
  • 批准号:
    82372095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高端引线框架铜合金构效关系深度挖掘及数据-知识协同驱动研发
  • 批准号:
    52374379
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
校园行为数据驱动的学生心理健康主动监测框架与筛查机制关键技术研究
  • 批准号:
    62307001
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
大学生个性化日常行为习惯的可解释发现框架与数据驱动干预机制
  • 批准号:
    62177017
  • 批准年份:
    2021
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
超启发搜索框架下运筹建模和数据学习双驱动的组合优化技术及港口调度综合优化研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
  • 批准号:
    10714540
  • 财政年份:
    2023
  • 资助金额:
    $ 292.81万
  • 项目类别:
Resolving single-cell analysis challenges via data-driven decision frameworks and novel statistical methods
通过数据驱动的决策框架和新颖的统计方法解决单细胞分析挑战
  • 批准号:
    10707308
  • 财政年份:
    2022
  • 资助金额:
    $ 292.81万
  • 项目类别:
Data-driven design of metal-organic frameworks for CO2 capture and photocatalytic conversion
用于二氧化碳捕获和光催化转化的金属有机框架的数据驱动设计
  • 批准号:
    2773471
  • 财政年份:
    2022
  • 资助金额:
    $ 292.81万
  • 项目类别:
    Studentship
Collaborative Research: Frameworks: Ghub as a Community-Driven Data-Model Framework for Ice-Sheet Science
合作研究:框架:Ghub 作为社区驱动的冰盖科学数据模型框架
  • 批准号:
    2004302
  • 财政年份:
    2020
  • 资助金额:
    $ 292.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Ghub as a Community-Driven Data-Model Framework for Ice-Sheet Science
合作研究:框架:Ghub 作为社区驱动的冰盖科学数据模型框架
  • 批准号:
    2004510
  • 财政年份:
    2020
  • 资助金额:
    $ 292.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了